Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-28T14:59:51.679Z Has data issue: false hasContentIssue false

Graphitization and particle size analysis of pyrolyzed cobalt phthalocyanine/carbon catalysts for oxygen reduction in fuel cells

Published online by Cambridge University Press:  03 March 2011

L. Dignard-Bailey
Affiliation:
CANMET, Laboratoire de Recherche en Diversification Énergétique, 1615 Montée Ste-Julie, C.P. 4800, Varennes, Québec, Canada, J3X 1S6
M.L. Trudeau
Affiliation:
Technologie des Matériaux, Institut de Recherche d'Hydro-Québec, 1800 Montée Ste-Julie, Varennes, Québec, Canada, J3X 1S1
A. Joly
Affiliation:
Technologie des Matériaux, Institut de Recherche d'Hydro-Québec, 1800 Montée Ste-Julie, Varennes, Québec, Canada, J3X 1S1
R. Schulz
Affiliation:
Technologie des Matériaux, Institut de Recherche d'Hydro-Québec, 1800 Montée Ste-Julie, Varennes, Québec, Canada, J3X 1S1
G. Lalande
Affiliation:
INRS Énergie et Matériaux, 1650 Montée Ste-Julie, C.P. 1020, Varennes, Québec, Canada, J3X 1S2
D. Guay
Affiliation:
INRS Énergie et Matériaux, 1650 Montée Ste-Julie, C.P. 1020, Varennes, Québec, Canada, J3X 1S2
J.P. Dodelet
Affiliation:
INRS Énergie et Matériaux, 1650 Montée Ste-Julie, C.P. 1020, Varennes, Québec, Canada, J3X 1S2
Get access

Abstract

Cobalt phthalocyanine (CoPc) adsorbed on a carbon black support (Vulcan XC-72) and pyrolyzed at various temperatures is a potential catalyst for the reduction of oxygen in solid polymer electrolyte fuel cells. This paper reports the results of the microstructural characterization of β-Co particles that are formed after pyrolysis at temperatures of 700, 900, and 1050 °C. Transmission electron microscopy (TEM) indicated that (i) for a pyrolysis temperature of 700 °C, the size distribution of the Co particles is bell-shaped with an average value of 4 nm and mean deviation of 1 nm; (ii) for a pyrolysis temperature of 900 °C, the Co particle size distribution skews toward larger particle sizes. The most probable particle size is about 6 nm, and the average particle size is 13 nm. By comparison with the TEM results, the particle size estimated from a spectroscopic method like x-ray absorption is underestimated, while from x-ray diffraction is overestimated. The TEM images show that Co particles act as heterogeneous nucleation sites for the graphitization of amorphous carbon. It is shown that (i), at least for pyrolysis temperature of 900 °C and above, most of the β-Co particles are surrounded by a shell of graphitic carbon layers that appears to protect the particles from corrosion in acidic media; (ii) for pyrolysis temperature of 1050 °C, graphite strings also appear throughout the amorphous carbon support in areas where Co particles are not detected. This behavior was not observed after pyrolysis of as-received carbon support at 1050 °C. These results allow for a better understanding of the behavior of the pyrolyzed catalysts immersed in an acidic solution or in a solid polymer fuel cell.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Srinivasan, S., Ticianelli, E. A., Derouin, C. R., and Redondo, A., J. Power Sources 22, 359 (1988).CrossRefGoogle Scholar
2Lemons, R. A., J. Power Sources 29, 251 (1990).CrossRefGoogle Scholar
3Prater, K., in Fuel Cells-Grove Anniversary Symposium ’89, edited by Lovering, D.G. (Elsevier, London, 1990).Google Scholar
4Cameron, D. S., Platinum Metals Rev. 34, 26 (1990).CrossRefGoogle Scholar
5Srinivasan, S., J. Electrochem. Soc. 136, 41C (1989).CrossRefGoogle Scholar
6Srinivasan, S., in Electrochemistry in Transition, edited by Murphy, O. J., Srinivasan, S., and Conway, B. E. (Plenum Press, New York, 1992), p. 577.CrossRefGoogle Scholar
7Srinivasan, S., Velev, O. A., Parthasarathy, A., Manko, D. J., and Appleby, A. J., J. Power Sources 36, 229 (1991).CrossRefGoogle Scholar
8Wilson, M. S. and Gottesfeld, S., J. Appl. Electrochem. 22, 1 (1992).CrossRefGoogle Scholar
9Taylor, E. J., Anderson, E. G., and Vilambi, N. R. K., J. Electrochem. Soc. 139, L45 (1992).CrossRefGoogle Scholar
10Wilson, M. S. and Gottesfeld, S., J. Electrochem. Soc. 139, L28 (1992).CrossRefGoogle Scholar
11Scherson, D. A., Gupta, S. L., Fierro, C., Yeager, E. B., Kordesch, M. E., Eldridge, J., Hoffman, R. W., and Blue, J., Electrochim. Acta 28, 1205 (1983).CrossRefGoogle Scholar
12Wiesener, K., Electrochim. Acta 31, 1073 (1986).CrossRefGoogle Scholar
13Scherson, D., Tanaka, A. A., Gupta, S. L., Fryk, D., Fierro, C., Holze, R., Yeager, E. B., and Lattimer, R. P., Electrochim. Acta 31, 1247 (1986).CrossRefGoogle Scholar
14Radyushkina, K. A. and Tarasevich, M. R., Electrokhimiya 22, 1155 (1986).Google Scholar
15van Veen, J. A. R., Colijn, H. A., and van Baar, J. F., Electrochim. Acta 33, 801 (1988).CrossRefGoogle Scholar
16Franke, R., Ohms, D., and Wiesener, K., J. Electroanal. Chem. 260, 63 (1989).CrossRefGoogle Scholar
17Tarasevich, M. R. and Radyushkina, K. A., Mater. Chem. Phys. 22, 477 (1989).CrossRefGoogle Scholar
18Savy, M., Coowar, F., Riga, J., Verbist, J. J., Bronoël, G., and Bex, S., J. Appl. Electrochem. 20, 260 (1990).CrossRefGoogle Scholar
19Widelöv, A. and Larsson, R., Electrochim. Acta 37, 187 (1992).CrossRefGoogle Scholar
20Biloul, A., Contamin, O., Scarbeck, G., Savy, M., van den Ham, D., Riga, J., and Vebist, J. J., J. Electroanal. Chem. 335, 163 (1992).CrossRefGoogle Scholar
21Martin Alves, M. C., Dodelet, J. P., Guay, D., Ladouceur, M., and Tourillon, G., J. Phys. Chem. 96, 10898 (1992).CrossRefGoogle Scholar
22Ladouceur, M., Lalande, G., Guay, D., Dodelet, J. P., Dignard-Baiiey, L., Trudeau, M. L., and Schulz, R., J. Electrochem. Soc. 140, 1974 (1993).CrossRefGoogle Scholar
23Tamizhmani, G., Dodelet, J. P., Guay, D., Lalande, G., and Capuano, G., J. Electrochem. Soc. 141, 41 (1994).CrossRefGoogle Scholar
24Weng, L. T., Bertrand, P., Lalande, G., Guay, D., and Dodelet, J. P., Appl. Surf. Sci. (in press).Google Scholar
25Cullity, B. D., in Elements of X-ray Diffraction, 2nd ed. (Addison-Wesley Publishing Company, Inc., Reading, MA, 1978), p. 284.Google Scholar
26Lalande, G., Tamizhmani, G., Côté, R., Dignard-Baiiey, L., Trudeau, M. L., Schulz, R., Guay, D., and Dodelet, J. P., unpublished.Google Scholar
27Spence, J. C. H., in Experimental High Resolution Transmission Electron Microscopy, 2nd ed. (Oxford University Press, Oxford, 1988), p. 270.Google Scholar
28Buseck, P. R., Cowley, J. M., and Ewing, L., in High-Resolution Transmission Electron Microscopy and Associated Techniques (Oxford University Press, Oxford, 1988), p. 319.Google Scholar
29Robertson, S. D., Nature 221, 1044 (1969).CrossRefGoogle Scholar
30Clausen, B. S., Grabask, L., Topsoe, H., Hansen, L. B., Stoltze, P., Norskov, J. K., and Nielsen, O. H., J. Catal. 141, 368 (1993).CrossRefGoogle Scholar
31Sattler, M. L. and Ross, P. N., Ultramicroscopy 20, 21 (1986).CrossRefGoogle Scholar
32Peuchert, M., Yoneda, T., Dalla-Belta, R.A., and Boudart, M., J. Electrochem. Soc. 133, 944 (1986).CrossRefGoogle Scholar
33Kinoshita, K., J. Electrochem. Soc. 137, 845 (1990).CrossRefGoogle Scholar
34Evans, S. and Ney, M. R., J. Hard Materials 1, 169 (1990).Google Scholar
35Courtney, R. L. and Duliere, S. F., Carbon 10, 65 (1972).CrossRefGoogle Scholar
36Potoczna-Petru, D., Carbon 29, 73 (1991).CrossRefGoogle Scholar
37Derbyshire, F. J., Presland, A. E. B., and Trimm, D. L., Carbon 13, 111 (1975).CrossRefGoogle Scholar
38Nagakura, S., J. Phys. Soc. Jpn. 12, 482 (1957).CrossRefGoogle Scholar
39Bethune, D. S., Kiang, C. H., de Vries, M. S., Gorman, G., Savoy, R., Vazquez, J., and Beyers, R., Nature 363, 605 (1993).CrossRefGoogle Scholar
40Iijima, S. and Ichihashi, T., Nature 363, 603 (1993).CrossRefGoogle Scholar
41Ruoff, R. S., Lorents, D. C., Chan, B., Malhotra, R., and Subramorey, S., Science 259, 346 (1993).CrossRefGoogle Scholar
42Tomita, M., Saito, Y., and Hayashi, T., Jpn. J. Appl. Phys. 32, Pt. 2, L280 (1993).CrossRefGoogle Scholar
43Samsonov, G. V., in Handbook of the Physico-chemical Properties of the Elements, edited by Samsonov, G. V. (IFI/Plenum, New York, Washington, DC, 1968), p. 595.CrossRefGoogle Scholar