Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-28T00:33:49.189Z Has data issue: false hasContentIssue false

Grinding speed dependence of microstructure, conductivity, and microwave electromagnetic and absorbing characteristics of the flaked Fe particles

Published online by Cambridge University Press:  04 March 2011

Guoxiu Tong*
Affiliation:
College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People’s Republic of China
Ji Ma
Affiliation:
College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People’s Republic of China
Wenhua Wu
Affiliation:
College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People’s Republic of China
Qiao Hua
Affiliation:
College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People’s Republic of China
Ru Qiao
Affiliation:
College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People’s Republic of China
Haisheng Qian
Affiliation:
College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: tonggx@zjnu.cn
Get access

Abstract

Flake-like Fe particles with controllable size and structures were achieved by modulating only the grinding speed; evidence provided by x-ray diffraction, scanning electron microscopy, resistivity measurement system, and vector network analyzer disclosed the conductivity; and microwave electromagnetic (EM) and absorbing characteristics of the resultant products strongly depended on their morphology and structure. As grinding speed (V) increases from 0 to 250 revolutions per minute (rpm), the crystalline size decreases; meanwhile, both internal strain and diameter/thickness ratio increase and the conductivity reaches the maximal value at V = 140 rpm because of the improvement of the surface conductivity. Thin flake-like Fe particles facilely obtained at high grinding speed present higher values of the permittivity and permeability than spherical particles, which are ascribed to the multiple polarizations and the natural resonance. Thus, the aforementioned products with high permeability and low cost may be promising candidates for EM compatibility materials.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kim, S.S., Kim, S.T., Yoon, Y.C., and Lee, K.S.: Magnetic, dielectric, and microwave absorbing properties of iron particles dispersed in rubber matrix in gigahertz frequencies. J. Appl. Phys. 97, 10F905 (2005).CrossRefGoogle Scholar
2.Wang, C., Lv, R.T., Huang, Z.H., Kang, F.Y., and Gu, J.L.: Synthesis and microwave absorbing properties of FeCo alloy particles/graphite nanoflake composites. J. Alloy. Comp. 509, 494 (2011).CrossRefGoogle Scholar
3.Zhou, P.H., Deng, L.J., Xie, J.L., and Liang, D.F.: Effects of particle morphology and crystal structure on the microwave properties of flake-like nanocrystalline Fe3Co2 particles. J. Alloy. Comp. 448, 303 (2008).CrossRefGoogle Scholar
4.Yang, Y., Xu, C.L., Xia, Y.X., Wang, T., and Li, F.S.: Synthesis and microwave absorption properties of FeCo nanoplates. J. Alloy. Comp. 493, 549 (2010).CrossRefGoogle Scholar
5.Deng, L.J., Zhou, P.H., Xie, J.L., and Zhang, L.: Characterization and microwave resonance in nanocrystalline FeCoNi flake composite. J. Appl. Phys. 101, 103916 (2007).CrossRefGoogle Scholar
6.Qiao, L., Wen, F.S., Wei, J.Q., Wang, J.B., and Li, F.S.: Microwave permeability spectra of flake-shaped FeCuNbSiB particle composites. J. Appl. Phys. 103, 063903 (2008).CrossRefGoogle Scholar
7.Liu, J.H., Ma, T.Y., Tong, H., Luo, W., and Yan, M.: Electromagnetic wave absorption properties of flaky Fe–Ti–Si–Al nanocrystalline composites. J. Magn. Magn. Mater. 322, 940 (2010).Google Scholar
8.Wang, X., Gong, R.Z., Luo, H., and Feng, Z.K.: Microwave properties of surface modified Fe–Co–Zr alloy flakes with mechanochemically synthesized polystyrene. J. Alloy. Comp. 480, 761 (2009).CrossRefGoogle Scholar
9.Zhou, P.H., Liu, Y.Q., and Deng, L.J.: Effect of 3d transition metal substitution on microstructure and microwave absorption properties of FeSiB nanocrystalline flakes. J. Magn. Magn. Mater. 322, 794 (2010).Google Scholar
10.Walser, R.M. and Kang, W.: Fabrication and properties of microforged ferromagnetic nanoflakes. IEEE Trans. Magn. 34, 1144 (1998).CrossRefGoogle Scholar
11.Fang, X.S., Hu, L.F., Ye, C.H., and Zhang, L.D.: One-dimensional inorganic semiconductor nanostructures: A new carrier for nanosensors. Pure Appl. Chem. 82, 2185 (2010).CrossRefGoogle Scholar
12.Tong, G.X., Hua, Q., Wu, W.H., Qin, M.Y., Li, L.C., and Gong, P.J.: Effect of liquid-solid ratio on the morphology, structure, conductivity, and electromagnetic characteristics of iron particles. Sci. China Ser. E Technol. Sci. 54, 484 (2011).CrossRefGoogle Scholar
13.Fang, X.S., Zhai, T.Y., Gautam, U.K., Li, L., Wu, L.M., Bando, Y., and Golberg, D.: ZnS nanostructures: From synthesis to applications. Prog. Mater. Sci. 56, 175 (2011).CrossRefGoogle Scholar
14.Tong, G.X., Guan, J.G., Xiao, Z.D., Mou, F.Z., Wang, W., and Yan, G.Q.: In situ generated H2 bubble-engaged assembly: A one-step approach for shape-controlled growth of Fe nanostructures. Chem. Mater. 20, 3535 (2008).CrossRefGoogle Scholar
15.Benjamin, J.S.: Dispersion strengthened super alloys by mechanical alloying. Metall. Trans. A 1, 2943 (1970).CrossRefGoogle Scholar
16.Kim, Y.D., Chung, J.Y., Kim, J., and Jeon, H.: Formation of nanocrystalline Fe-Co powders produced by mechanical alloying. Mater. Sci. Eng. A 291, 17 (2000).CrossRefGoogle Scholar
17.Tong, G.X., Wu, W.H., Hua, Q., Miao, Y.Q., Guan, J.G., and Qian, H.S.: Enhanced electromagnetic characteristics of carbon nanotubes/carbonyl iron powders complex absorbers in 2-18 GHz ranges. J. Alloy. Comp. 509, 451 (2011).Google Scholar
18.Fuchs, K.: The conductivity of thin metallic films according to the electron theory of metals. Math. Proc. Cambridge Philos. Soc. 34, 100 (1938).CrossRefGoogle Scholar
19.Hoffmann, H. and Vancea, J.: Critical assessment of thickness-dependent conductivity of thin metal films. Thin Solid Films 85, 147 (1981).CrossRefGoogle Scholar
20.Klemens, P.G. and Gell, M.: Thermal conductivity of thermal-barrier coatings. Mater. Sci. Eng. A 245, 143 (1998).Google Scholar
21.Soyez, G., Eastman, J.A., Thompson, L.J., Bai, G.R., Baldo, P.M., McCormick, A.W., DiMelfi, R.J., Elmustafa, A.A., Tambwe, M.F., and Stone, D.S.: Grain-size-dependent thermal conductivity of nanocrystalline yttriastabilized zirconia films grown by metal-organic chemical vapor deposition. Appl. Phys. Lett. 77, 1155 (2000).Google Scholar
22.Fang, X.S., Ye, C.H., Zhang, L.D., and Xie, T.: Twinning-mediated growth of Al2O3 nanobelts and their enhanced dielectric responses. Adv. Mater. 17, 1661 (2005).CrossRefGoogle Scholar
23.Fang, X.S., Ye, C.H., Zhang, L.D., Zhang, J.X., Zhao, J.W., and Yan, P.: Direct observation of the growth process of MgO nanoflowers by a simple chemical route. Small 1, 422 (2005).CrossRefGoogle ScholarPubMed
24.Tong, G.X., Guan, J.G., Fan, X.A., Wang, W., and Li, W.: Influence of pyrolysis temperature on the static magnetic and microwave electromagnetic properties of polycrystalline iron fibers. Acta Metall. Sinica 44, 867 (2008).Google Scholar
25.Fang, X.S., Ye, C.H., Xie, T., Wang, Z.Y., Zhao, J.W., and Zhang, L.D.: Regular MgO nanoflowers and their enhanced dielectric responses. Appl. Phys. Lett. 88, 013101 (2006).CrossRefGoogle Scholar
26.Li, H.R.: Introduction to Dielectric Physics (Chengdu University of Technology Press, Chengdu, 1990), p. 89.Google Scholar
27.Liu, J.R., Itoh, M., and Machida, K.: Magnetic and electromagnetic wave absorption properties of α-Fe/Z-type Ba-ferrite nanocomposites. Appl. Phys. Lett. 88, 062503 (2006).Google Scholar
28.Li, Z.W., Chen, L., Ong, C.K., and Yang, Z.: Static and dynamic magnetic properties of Co2Z barium ferrite nanoparticle composites. J. Mater. Sci. 40, 719 (2005).CrossRefGoogle Scholar
29.Sugimoto, S., Maeda, T., Book, D., Kagotani, T., Inomata, K., Homma, M., Ota, H., Houjou, Y., and Sato, R.: GHz microwave absorption of a fine α-Fe structure produced by the disproportionation of Sm2Fe17 in hydrogen. J. Alloy. Comp. 330, 301 (2002).CrossRefGoogle Scholar
30.Wu, M.Z., Zhang, Y.D., Hui, S., Xiao, T.D., Ge, S.H., Hines, W.A., Budnick, J.I., and Taylor, G.W.: Microwave magnetic properties of Co50/(SiO2)50 nanoparticles. Appl. Phys. Lett. 80, 4404 (2002).CrossRefGoogle Scholar
31.Li, J.G., Huang, J.J., Qin, Y., and Ma, F.: Magnetic and microwave properties of cobalt nanoplatelets. Mater. Sci. Eng. B 138, 199 (2007).CrossRefGoogle Scholar
32.Toneguzzo, P., Viau, G., Acher, O., Guillet, F., Bruneton, E., Fievet-Vincent, F., and Fievet, F.: CoNi and FeCoNi fine particles prepared by the polyol process: Physico-chemical characterization and dynamic magnetic properties. J. Mater. Sci. 35, 3767 (2000).Google Scholar
33.Mercier, D., Lévy, J.C.S., Viau, G., Fiévet-Vincent, F., Fiévet, F., Toneguzzo, P., and Acher, O.: Magnetic resonance in spherical Co-Ni and Fe-Co-Ni particles. Phys. Rev. B 62, 532 (2000).Google Scholar
34.Yoshida, S., Ando, S., Shimada, Y., Suzuki, K., Nomura, K., and Fukamichi, K.: Crystal structure and microwave permeability of very thin Fe-Si-Al flakes produced by microforging. J. Appl. Phys. 93, 6659 (2003).CrossRefGoogle Scholar
35.Tang, X., Tian, Q., Zhao, B.Y., and Hu, K.: The microwave electromagnetic and absorption properties of some porous iron powders. Mater. Sci. Eng. A 445446, 135 (2007).CrossRefGoogle Scholar
36.Fan, X.A., Guan, J.G., Wang, W., and Tong, G.X.: Morphology evolution, magnetic and microwave absorption properties of nano/submicrometre iron particles obtained at different reduced temperatures. J. Phys. D: Appl. Phys. 42, 075006 (2009).CrossRefGoogle Scholar