Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-28T07:00:20.307Z Has data issue: false hasContentIssue false

Growth defects in CuInSe2 thin films

Published online by Cambridge University Press:  03 March 2011

Takahiro Wada
Affiliation:
Central Research Laboratories, Matsushita Electric Ind. Co., Ltd., Moriguchi, Osaka 570, Japan
Takayuki Negami
Affiliation:
Central Research Laboratories, Matsushita Electric Ind. Co., Ltd., Moriguchi, Osaka 570, Japan
Mikihiko Nishitani
Affiliation:
Central Research Laboratories, Matsushita Electric Ind. Co., Ltd., Moriguchi, Osaka 570, Japan
Get access

Abstract

CuInSe2 thin film solar cells with an efficiency of about 10% were studied with a cross-sectional high resolution transmission electron microscope (HRTEM). The growth defects such as twins, stacking faults, and intergrowth phase in the CuInSe2 thin films were studied in detail. Polycrystalline CuInSe2 films were deposited on a Mo-coated glass substrate by using the three source evaporation system. The CuInSe2 film contains fivefold multiply twinned crystallites as well as a high density of twins in the {112} plane. The CuInSe2 film also contains intergrowth phase with a long range of periodicities of 10 Å parallel to the [112] direction of the chalcopyrite structure. The intergrowth phase composition is similar to the chalcopyrite phase. The structural model of the intergrowth phase is proposed on the basis of the high resolution electron micrograph.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Shay, J. and Wernick, J., Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties, and Applications (Pergamon, New York, 1975).Google Scholar
2Rockett, A. and Birkmire, R. W., J. Appl. Phys. 70, R81 (1991).CrossRefGoogle Scholar
3Stolt, L., Hedstrom, J., Kessler, J., Ruckh, M., Velthaus, K., and Schock, H. W., Appl. Phys. Lett. 62, 597 (1993).CrossRefGoogle Scholar
4Kight, K. S., Mater. Res. Bull. XXVII, 161 (1992).CrossRefGoogle Scholar
5Tseng, B-H., Rockett, A., Lommasson, T. C., Yang, L. C., Wert, C. A., and Thornton, J. A., J. Appl. Phys. 67, 2637 (1990).CrossRefGoogle Scholar
6Ertel, A., Mader, W., Dittrich, H., Schock, H. W., and Menner, R., Polycrystalline Semiconductors II (Springer-Verlag, Berlin, 1991), p. 439.CrossRefGoogle Scholar
7Kiely, C. J., Pond, R. C., Kenshole, G., and Rockett, A., Philos. Mag. A 63, 1249 (1991).CrossRefGoogle Scholar
8Chen, J. S., Kolawa, E., Garland, C. M., and Nicolet, M-A., Thin Solid Films 219, 183 (1992).CrossRefGoogle Scholar
9Nishitani, M., Negami, T., Terauchi, M., and Hirao, T., Jpn. J. Appl. Phys. 31, 192 (1992).CrossRefGoogle Scholar
10Kohiki, S., Nishitani, M., Nishikura, K., Negami, T., Terauchi, M., and Hirao, T., Thin Solid Films 207, 265 (1992).CrossRefGoogle Scholar
11Ino, S. and Ogawa, S., J. Phys. Soc. Jpn. 22, 1365 (1967).CrossRefGoogle Scholar
12Marks, L. D. and Howie, A., Nature 282, 196 (1979).CrossRefGoogle Scholar
13Matsumoto, S. and Matsui, Y., J. Mater. Sci. 18, 1785 (1983).CrossRefGoogle Scholar
14Narayan, J., Srivatsa, A. R., and Ravi, K. V., Appl. Phys. Lett. 54, 1659 (1989).CrossRefGoogle Scholar
15Iijima, S., Jpn. J. Appl. Phys. 26, 365 (1987).CrossRefGoogle Scholar
16Ernst, F. and Pirouz, P., J. Appl. Phys. 64, 4526 (1988).CrossRefGoogle Scholar
17Wada, T., Negami, T., and Nishitani, M., Appl. Phys. Lett, (in press).Google Scholar
18Folmer, J. C. W., Turner, J. A., Noufi, R., and Cahen, D., J. Electrochem. Soc. 132, 1319 (1985).CrossRefGoogle Scholar
19Fearheiley, M. L., Solar Cells 16, 91 (1986).CrossRefGoogle Scholar
20Boehnke, U-C. and Kuhn, G., J. Mater. Sci. 22, 1635 (1987).CrossRefGoogle Scholar
21Honle, W., Kuhn, G., and Boehnke, U-C., Cryst. Res. Technol. 23, 1347 (1988).CrossRefGoogle Scholar
22Shumann, B., Kuhn, G., Boehnke, U., and Neels, H., Kristallographia 26, 1195 (1981).Google Scholar
23Manolikas, C., Landuyt, J. V., Ridder, R. D., and Amelinckx, S., Phys. Status Solidi 55, 709 (1979).CrossRefGoogle Scholar