Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-14T18:59:11.596Z Has data issue: false hasContentIssue false

Growth morphology of large YBCO grains fabricated by seeded peritectic solidification: (I) The seeding process

Published online by Cambridge University Press:  31 January 2011

Wai Lo
Affiliation:
IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE, United Kingdom
D. A. Cardwell
Affiliation:
IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE, United Kingdom
P. D. Hunneyball
Affiliation:
IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE, United Kingdom
Get access

Abstract

The growth of large grain YBa2Cu3O7−δ (YBCO) by peritectic solidification in the presence of a (Sm,Y)Ba2Cu3O7−δ seed is characterized by the initial seeding process, development of a facet plane around the seed, and finally by continuous nonlocal growth away from the seed. A detailed investigation of the seeding process using electron microscopy, electron probe microanalysis, and thermal analysis techniques is reported here as the first in a series of studies of these key growth features. Results show that the seed partially melts below its nominal melting temperature due to a distribution of yttrium cations across the seed/YBCO interface. The formation of a Sm/YBa2Cu3O7−δ solid solution, which occurs via a reaction between (Sm,Y)2Ba2CuO5 and liquid state Ba3Cu5O8, has been observed across this interface at temperatures below the peritectic temperature Tp of the seed. The temperature window available for melting the YBCO phase while avoiding full peritectic decomposition of the (Sm,Y)Ba2Cu3O7−δ seed is maximized for seeds of high Sm content and thickness in excess of 0.2 mm. Finally, the dwell time at temperatures above Tp should be as short as possible if the integrity of the seed is to be maintained throughout the YBCO growth process.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Lee, D. F., Selvanmanikam, V., and Salama, K., Physica C 165, 480 (1990).Google Scholar
2.Murakami, M., Kotoh, S., Koshizuka, N., Tanaka, S., Matsushita, T., Kambe, S., and Kitazawa, K., Cryogenics 30, 390 (1990).CrossRefGoogle Scholar
3.Sengupta, S., Shi, D., Wang, Z., Biondo, C., Balachandran, U., and Goretta, K. C., Physica C 199, 43 (1992).CrossRefGoogle Scholar
4.Chakrapani, V., Balkin, D., and McGinn, P., Appl. Supercond. 1, 71 (1993).CrossRefGoogle Scholar
5.Lepropre, M., Mont, I.. Delamare, M. P., Hervieu, M., Simon, Ch., Provost, J., Desgardin, G., Raveau, B., Barbut, J. M., Borgault, D., and Braithwaite, D., Cryogenics 34, 63 (1994).CrossRefGoogle Scholar
6.Matthess, D. N., Cochrane, J. W., and Russell, G. J., Physica C 249, 255 (1995).CrossRefGoogle Scholar
7.Lo, Wai, Cardwell, D. A., Dewhurst, C. D., and Dung, S. L., J. Mater. Res. 11, 786 (1996).CrossRefGoogle Scholar
8.Fukuyama, H., Seki, K., Kitazawa, T., Endou, S., Murakami, M., Takaichi, H., and Koshizuka, N., in Advances in Superconductivity V, edited by Bando, Y. and Yamauchi, H. (Proc. 5th Int. Symp. Supercond., Springer-Verlag, Tokyo, Japan, 1993), p. 1313.CrossRefGoogle Scholar
9.Takahata, R., Ueyama, H., and Kubo, A., in Advances in Superconductivity V, edited by Bando, Y. and Yamauchi, H. (Proc. 5th Int. Symp. Supercond., Springer-Verlag, Tokyo, Japan, 1993), p. 1309.CrossRefGoogle Scholar
10.Decher, R., Peters, P. N., Sisk, R. C., Urban, E. W., Vlasse, M., and Rao, D. K., Appl. Supercond. 1, 1265 (1993).CrossRefGoogle Scholar
11.Moon, F. C. and Chang, P. Z., Appl. Phys. Lett. 56, 22 (1990).CrossRefGoogle Scholar
12.Moon, F. C., Chang, P. Z., Hojaji, H., Barkatt, A., and Thorpe, A. N., Jpn. J. Appl. Phys. 29, 1257 (1990).CrossRefGoogle Scholar
13.Chu, W. K., Ma, K. B., McMichael, C. K., and Lamb, M. A., Appl. Supercond. 1, 1259 (1993).CrossRefGoogle Scholar
14.Murakami, M., Appl. Supercond. 1, 1157 (1993).CrossRefGoogle Scholar
15.Weinstein, R., In-Gann Chen, Liu, J., and Parks, D., Appl. Phys. Lett. 56, 1475 (1990).CrossRefGoogle Scholar
16. In-Gann Chen, Liu, J., Weinstein, R., and Lau, K., J. Appl. Phys. 72, 1013 (1992).Google Scholar
17.Murakami, M., Supercond. Sci. Technol. 5, 185203 (1992).CrossRefGoogle Scholar
18.Salama, K., Selvamanickam, V., and Lee, D. F., Processing and Properties of High Tc Superconductors 1: Bulk Materials, edited by Jin, S. (World Scientific Press, Singapore, 1993), pp. 155212.CrossRefGoogle Scholar
19.Sawano, K., Morita, M., Tanaka, M., Sasaki, T., Kimura, K., Takebayshi, S., Kimura, M., and Miyamoto, K., Jpn. J. Appl. Phys. 30, L1157 (1991).CrossRefGoogle Scholar
20.Varanasi, C., McGinn, P. J., Pavate, V., and Kvam, E. P., Physica C 221, 46 (1994).CrossRefGoogle Scholar
21.Mironova, M., Lee, D. F., and Salama, K., Physica C 211, 188 (1993).CrossRefGoogle Scholar
22.Bateman, C. A., Zhang, J., Chan, H. M., and Harmer, M. P., J. Am. Ceram. Soc. 75, 179 (1992).Google Scholar
23.Cima, M., Flemings, M., Figucredo, A., Nakade, M., Ishii, H., Brody, H., and Haggerty, J., J. Appl. Phys. 72, 179 (1992).CrossRefGoogle Scholar
24.Izumi, T., Nakamura, Y., and Shiohara, Y., J. Mater. Res. 7, 1621 (1992).CrossRefGoogle Scholar
25.Meng, R. L., Gao, L., Gautier-Picard, P., Ramirez, D., Sun, Y. Y., and Chu, C. W., Physica C 232, 337 (1994).CrossRefGoogle Scholar
26.Chen, Y. L., Chan, H. M., Harmer, M. P., Todt, V. R., Sengupta, S., and Shi, D., Physica C 234, 232 (1994).CrossRefGoogle Scholar
27.Shi, D., Lahiri, K., Hull, J. R., LeBlanc, D., LeBlanc, M. A. R., Dabkowshi, A., Chang, Y., Jiang, Y., Zhang, Z., and Fan, H., Physica C 246, 253 (1995).CrossRefGoogle Scholar
28.Todt, V. R., Sengupta, S., Shi, D., Sahm, P. R., McGinn, P. J., Poeppel, R. B., and Hull, J. R., J. Electron. Mater. 23, 1127 (1994).CrossRefGoogle Scholar
29.Yan, Y., Cardwell, D. A., Campbell, A. M., and Stobbs, W. M., J. Mater. Res. 11, 2990 (1996).CrossRefGoogle Scholar
30.Lo, W., Cardwell, D. A., Dung, S. L., and Barter, R. G., IEEE Trans. Appl. Supercond. 5, 1619 (1995).CrossRefGoogle Scholar
31.Lo, W., Cardwell, D. A., Dung, S. L., and Barter, R. G., J. Mater. Res. 11, 39 (1996).CrossRefGoogle Scholar
32.Lo, W., Cardwell, D. A., Dung, S. L., and Barter, R. G., J. Mater. Sci. 30, 3995 (1995).CrossRefGoogle Scholar
33.Cardwell, D. A., Lo, W., Thorpe, H. D. E., and Roberts, A., J. Mater. Sci. Lett. 14, 1444 (1995).CrossRefGoogle Scholar