Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T10:59:45.284Z Has data issue: false hasContentIssue false

Growth of aromatic molecules on solid substrates for applications in organic electronics

Published online by Cambridge University Press:  03 March 2011

Gregor Witte
Affiliation:
Physikalishe Chemie I, Ruhr-Universitat Bochum, 44780 Bochum, Germany
Christof Wöll*
Affiliation:
Physikalishe Chemie I, Ruhr-Universitat Bochum, 44780 Bochum, Germany
*
a) Address all correspondence to this author. e-mail: woell@pc.ruhr-uni-bochum.de This author was an editor of this focus issue during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/publications/jmr/policy.html
Get access

Abstract

The growth of molecular adlayers on solid substrates is reviewed with aspecial emphasis on molecules of relevance for organic electronics. In particular,we will consider planar molecules with extended π-systems, namely acenes (anthracene, tetracene, pentacene), perylene, coronenes, diindenoperylene, 3,4,9,10-perylene-tetracarboxylicacid-dianhydride, poly-phenylenes, oligothiophenes, and phthalocyanines. Special consideration is given to the importance of the formation of ordered molecular overlayers, which are compared with the structure of the corresponding bulk crystals. Whenever possible, aspects relevant for device fabrication (morphology of deposited films, mobilities of charge carriers) will be addressed.

Type
Reviews—Organic Electronics Special Section
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Pope, M. and Swenberg, C.E.: Electronic Processes in Organic Crystals and Polymers (Oxford University Press, New York, 1999)CrossRefGoogle Scholar
2.Farchioni, R. and Grosso, G.: Organic Electronic Materials: Conjugated Polymers and Low Molecular Weight Organic Solids (Springer, Berlin, 2001)CrossRefGoogle Scholar
3.Dimitrakopoulos, C.D. and Malenfant, P.R.L.: Organic thin film transistors for large area electronics. Adv. Mater. 14, 99 (2002).3.0.CO;2-9>CrossRefGoogle Scholar
4.Horowitz, G.: Organic field-effect transistors. Adv. Mater. 10, 365 (1998).3.0.CO;2-U>CrossRefGoogle Scholar
5.Karl, N.: Organic Semiconductors, in Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology, edited by Madelung, O., Schulz, M., and Weiss, H. (Springer, Heidelberg, 1985), p. 106Google Scholar
6.Karl, N.: Charge-Carrier Mobility in Organic Crystals, in Organic Electronic Materials, edited by Frachioni, R. and Grosso, G. (Springer, Berlin, 2001) p. 283CrossRefGoogle Scholar
7.Karl, N.: Charge-carrier transport in organic semiconductors. Synth. Met. 133–134 649–657 (2003).Google Scholar
8.Kelley, T.W. and Frisbie, C.D.: Gate voltage dependent resistance of a single organic semiconductor grain boundary. J. Phys. Chem. B 105, 4538 (2001).CrossRefGoogle Scholar
9.Horowitz, G., Garnier, F., Yasser, A., Hajlaoui, R. and Kouki, F.: Field-effect transistor made with a sexithiophene single crystal. Adv. Mater. 8, 52 (1996).CrossRefGoogle Scholar
10.Butko, V.Y., Chi, X. and Ramirez, A.P.: Free-standing tetracene single crystal field effect transistor. Solid State Commun. 128, 431 (2003).CrossRefGoogle Scholar
11.Podzorov, V., Sysoev, S.E., Loginova, E., Pudalov, V.M. and Gershenson, M.E.: Single crystal organic field effect transistors with the hole mobility ∼8cm2/Vs. Appl. Phys. Lett. 83, 3504 (2003).CrossRefGoogle Scholar
12.Butko, V.Y., Chi, X., Lang, D.V. and Ramirez, A.P.: Field-effect transistor on pentacene single crystal. Appl. Phys. Lett. 83, 4773 (2003).CrossRefGoogle Scholar
13.Boer, R.W.I. d, Klapwijk, T.M. and Morpurgo, A.F.: Field-effect transistiors on tetracene single crystals. Appl. Phys. Lett. 83, 4345 (2003).CrossRefGoogle Scholar
14.Gundlach, D.J., Lin, Y.Y., Jackson, T.N., Nelson, S.F. and Schlom, D.G.: Pentacene organic thin-film transistors—molecular ordering and mobility. IEEE Electron. Device Lett. 18 87–89 (1997).CrossRefGoogle Scholar
15.Wöll, C.: Characterization of Adsorbate Overlayers: Measuring Techniques, in LANDOLT-BOERNSTEIN: Physics of Covered Solid Surfaces, Subvolume A: Adsorbed Layers on Surfaces, edited by Bonzel, H.P. (Springer, Heidelberg, 2002)Google Scholar
16.Somorjai, G.A.: Introduction to Surface Chemistry and Catalysis (Wiley, New York, 1994)Google Scholar
17.Brune, H.: Microscopic view of epitaxial metal growth: Nucleation and aggregation. Surf. Sci. Reports 31 121–229 (1998).CrossRefGoogle Scholar
18.Michely, T. and Krug, J.: Islands, Mounds and Atoms. Patterns and Processes in Crystal Growth Far from Equilibrium, vol. 42, edited by Ertl, G., Lüth, H., and Mills, D.L. (Springer, Berlin, Heidelberg, 2003)Google Scholar
19.Gomer, R.: Diffusion of adsorbates on metal surfaces. Rep. Prog. Phys. 53, 917 (1990).CrossRefGoogle Scholar
20.Bernstein, J.: Polymorphism in Molecular Crystals (Oxford University Press, New York, 2002)Google Scholar
21.Koch, R.: Intrinsic stress of ultrathin epitaxial films, Appl. Phys. A-Mat. Sci. & Proc. 69, 529 (1999).CrossRefGoogle Scholar
22.Forrest, S.R.: Ultrathin organic films grown by organic molecular beam deposition and related techniques. Chem. Rev. 97 1793–1896 (1997).CrossRefGoogle ScholarPubMed
23.Hooks, D.E., Fritz, T. and Ward, M.D.: Epitaxy and molecular organization on solid substrates. Adv. Mater. 13, 227 (2001).3.0.CO;2-P>CrossRefGoogle Scholar
24.Barlow, S.M. and Raval, R.Complex organic molecules at metal surfaces: Bonding, organization, and chirality. Surf. Sci. Rep. 50, 201 (2003).CrossRefGoogle Scholar
25.Fosser, K.A., Nuzzo, R.G., Bagus, P.S. and Wöll, C.The adsorption of cyclopropane and cyclohexane on Cu(111): An experimental and theoretical investigation on the nature of the CH-metal interaction, Angewandte Chemie, Intern. Ed. 41, 1735-1737 (2002)Google ScholarPubMed
26.Fosser, K.A., Nuzzo, R.G., Bagus, P.S. and Wöll, C.: The origin of soft vibrational modes of alkanes adsorbed on Cu: An experimental and theoretical investigation. J. Chem. Phys. 118 5115–5131 (2003).CrossRefGoogle Scholar
27.Bagus, P.S., Staemmler, V. and Wöll, C.: Exchange-like effects for closed-shell adsorbates: Interface dipole and work function. Phys. Rev. Lett. 89 0961041–0961043 (2002).CrossRefGoogle Scholar
28.Reiß, S., Krumm, H., Niklewski, A., Staemmler, V. and Wöll, C.: The adsorption of acenes on rutile TiO2(110): A multi-technique investigation. J. Chem. Phys. 116 7704–7713 (2002).CrossRefGoogle Scholar
29.Somorjai, G.A.: Surface Chemistry and Catalysis (John Wiley & Sons, New York, 1994)Google Scholar
30.Weiss, K., Gebert, S., Wühn, M., Wadepohl, H. and Wöll, C.: Near x-ray absorption fine structure of benzene adsorbed on metal surfaces: Comparison to benzene cluster complexes. J. Vac. Sci. Technol. A. 16 1017–1022 (1998).CrossRefGoogle Scholar
31.Triguero, L., Föhlisch, A., Väterlein, P., Hasselstrom, J., Weinelt, M., Pettersson, L.G.M., Luo, Y., Agren, H. and Nilsson, A.: Direct experimental measurement of donation/back-donation in unsaturated hydrocarbon bonding to metals. J. Am. Chem. Soc. 122 12310–12316 (2000).CrossRefGoogle Scholar
32.Mori, S.: Adsorption of benzene on the fresh steel surface formed by cutting under high vacuum. Appl. Surf. Sci. 27, 401 (1987).CrossRefGoogle Scholar
33.Umbach, E.: Characterization of organic overlayers on well-defined substrates. Prog. Surf. Sci. 35 113–127 (1991).Google Scholar
34.Mainka, C., Bagus, P.S., Schertel, A., Strunskus, T., Grunze, M. and Wöll, C.: Linear dichroism in X-ray absorption spectroscopy of strongly chemisorbed planar molecules: role of adsorption induced rehybridisations. Surf. Sci. 341 L1055–L1060 (1995).CrossRefGoogle Scholar
35.Mainka, C., Wegner, H., Schertel, A., Wöll, C. and Grunze, M.: A multitechnique spectroscopic investigation of the adsorption of pyromellitic dianhydride (PMDA) on Pt(111). Zeitschrift für Physikalische Chemie. 198 221–243 (1997).CrossRefGoogle Scholar
36.Jakob, P. and Menzel, D.: Initial stages of multilayer growth and structural phase transitions of physisorbed benzene on Ru(001). J. Chem. Phys. 105 3838–3848 (1996).CrossRefGoogle Scholar
37.Jakob, P. and Menzel, D.: Benzene multilayers: A model for their anisotropic growth from vibrational spectroscopy and thermal desorption. Surf. Sci. 220 70–95 (1989).CrossRefGoogle Scholar
38.Mo, H., Taub, H., Volkmann, U.G., Pino, M., Ehrlich, S.N., Hansen, F.Y., Lu, E. and Miceli, P.: A novel growth mode of alkane films on a SiO2 surface. Chem. Phys. Lett. 377 99–105 (2003).CrossRefGoogle Scholar
39.Weckesser, J., Fuhrmann, D., Weiss, K., Wöll, C. and Richardson, N.V.: Photoemission from long chain alkanes adsorbed on a metal surface and the electronic structure of trans-polyethylene (-CH2 -)n. Surf. Rev. Lett. 4 209–218 (1997).CrossRefGoogle Scholar
40.Hansen, F.Y., Herwig, K.W., Matthies, B. and Taub, H.: Intramolecular and lattice melting in n-alkane monolayers: An analog of melting in lipid bilayers. Phys. Rev. Lett. 83, 2362 (1999).CrossRefGoogle Scholar
41.Hosoi, Y., Sakurai, Y., Yamamoto, M., Ishii, H., Ouchi, Y. and Seki, K.: Structures of a film of the long-chain n-alkane n-C44H90 on a Cu(100) surface. Surf. Sci. 515 157–174 (2002).CrossRefGoogle Scholar
42.Ito, E., Oji, H., Ishii, H., Oichi, K., Ouchi, Y. and Seki, K.: Interfacial electronic structure of long-chain alkane/metal systems studied by UV-photoelectron and metastable atom electron spectroscopies. Chem. Phys. Lett. 287 137–142 (1998).CrossRefGoogle Scholar
43.Fuhrmann, D. and Wöll, C.: Damping of external molecular vibrations at surface: Alkanes on Cu(111) and Pb(111). Surf. Sci. 368 20–26 (1996).CrossRefGoogle Scholar
44.Witte, G., Weiss, K., Jakob, P., Braun, J., Kostov, K.L. and Wöll, C.: Damping of molecular motion on a solid substrate: Evidence for electron-hole pair creation. Phys. Rev. Lett. 80 121–124 (1998).CrossRefGoogle Scholar
45.Cheng, E., Cole, M.W., Saam, W.F. and Treiner, J.: Phase transitions in multilayer helium films. Phys. Rev. B 46, 13967 (1992).CrossRefGoogle ScholarPubMed
46.Cheng, E., Cole, M.W., Saam, W.F. and Treiner, J.: Wetting temperature shift of helium on a layered substrate. J. Low. Temp. Phys. 89 739–742 (1992).CrossRefGoogle Scholar
47.Saam, W.F., Treiner, H-P., Cheng, E. and Cole, M.W.: Helium wetting and prewetting phenomena at finite temperatures. J. Low. Temp. Phys. 89 637–640 (1992).CrossRefGoogle Scholar
48.Volkmann, U.G., Pino, M., Altamirano, L.A., Taub, H. and Hansen, F.Y.: High-resolution ellipsometric study of an n-alkane film, dotriacontane, adsorbed on a SiO2 surface. J. Chem. Phys. 116 2107–2115 (2002).CrossRefGoogle Scholar
49.Wu, Z., Ehrlich, S.N., Matthies, B., Herwig, K.W., Dai, P., Volkmann, U.G., Hansen, F.Y. and Taub, H.: Growth of n-alkane films on a single-crystal substrate. Chem. Phys. Lett. 348 168–174 (2001).CrossRefGoogle Scholar
50.Campbell, R.B., Robertson, J.M. and Trotter, J.: The crystal and molecular structure of pentacene. Acta Crystallogr. 14, 705 (1961).CrossRefGoogle Scholar
51.Campbell, R.B., Robertson, J.M. and Trotter, J.: The crystal structure of hexacene, and a revision of the crystallographic data for tetracene and pentacene. Acta Crystallogr. 15 289–290 (1962).CrossRefGoogle Scholar
52.Holmes, D., Kumaraswamy, S., Matzger, A.J. and Vollhardt, K.P.C.: On the nature of nonplanarity in the [N]phenylenes. Chem. Eur. J. 5, 3399 (1999).3.0.CO;2-V>CrossRefGoogle Scholar
53.Siegrist, T., Kloc, C., Schön, J.H., Batlogg, B., Haddon, R.C., Berg, S. and Thomas, G.A.: Enhanced physical properties in a pentacene polymorph. Angew. Chemie Int. Edit. 40, 1732 (2001).3.0.CO;2-7>CrossRefGoogle Scholar
54.Mattheus, C.C., Dros, A.B., Baas, J., Meetsma, A., Boer, J.L. and Palstra, T.T.M.: Polymorphism in pentacene. Acta Crystallogr. C75 939–941 (2001).Google Scholar
55.Held, G. and Steinrück, H.P.: Physics of Covered Solid Surfaces, in Landolt-Börnstein New Series, edited by Bonzel, H.P. (Springer, Berlin, 2003)Google Scholar
56.Dimitrakopoulos, C.D., Brown, A.R. and Pomp, A.: Molecular beam deposited thin films of pentacene for organic field effect transistor applications. J. Appl. Phys. 80, 2501 (1996).CrossRefGoogle Scholar
57.Bouchoms, I.P.M., Schoonveld, W.A., Vrijmoeth, J. and Klapwijk, T.M.: Morphology indentification of the thin film phases of vacuum evaporated pentacene in SiO2 substrates. Synth. Met. 104 175–178 (1999).CrossRefGoogle Scholar
58.Bredas, J.L., Beljonne, D., Cornil, J., Calbert, J.P., Shuai, Z. and Silbey, R.: Electronic structure of pi-conjugated oligomers and polymers: a quantum-chemical approach to transport properties. Synth. Met. 125 107–116 (2002).Google Scholar
59.Cornil, J., Calbert, J.P. and Bredas, J.L.: Electronics structure of pentacene single crystal: Relation to transport porperties, J. Am. Chem. Soc. 123, 1250 (2001).CrossRefGoogle Scholar
60.Wijs, G.A. d., Mattheusm, C.C., Groot, R.A. d., and Palstra, T.T.M., Anisotropy of mobility of pentacene from frustration. Synth. Met. 139, 109 (2003).CrossRefGoogle Scholar
61.Endres, R.G., Fong, C.Y., Yang, L.H., Witte, G. and Wöll, C.: Structural and electronic properties of pentacene molecule and molecular pentacene solid. Computational Materials Science 29 362–370 (2004).CrossRefGoogle Scholar
62.Minakata, T., Imai, H., Ozaki, M. and Saco, K.: Structural studies on highly ordered and highly conductive thin films of pentacene. J. Appl. Phys. 72, 5220 (1992).CrossRefGoogle Scholar
63.Chang, J.W., Kim, H., Ju, B.K., Jang, J. and Lee, Y.H.: Structure and morphology of vacuum-evaporated pentacene as a function of the substrate temperature. J. Korean Phys. Soc. 42 647–651 (2003).Google Scholar
64.Heringdorf, JF.J.M. z., Reuter, M.C., and Tromp, R.M., Growth dynamics of pentacene thin films. Nature 412, 517 (2001).CrossRefGoogle Scholar
65.Ruiz, R., Nickel, B., Koch, N., Feldman, L.C., Haglund, R.F., Kahn, A. and Scoles, G.: Pentacene ultrathin film formation on reduced and oxidized Si surfaces. Phys. Rev. B 67, 125406 (2003).CrossRefGoogle Scholar
66.Voigt, M., Dorsfeld, S., Volz, A. and Sokolowski, M.: Nucleation and growth of molecular organic crystals in a liquid film under vapor deposition. Phys. Rev. Lett. 91, 26103 (2003).CrossRefGoogle Scholar
67.Brinkmann, M., Graff, S., Straupe, C., Wittmann, J.C., Chaumont, C., Nuesch, F., Aziz, A., Schaer, M. and Zuppiroli, L.: Orienting tetracene and pentacene thin films onto friction-transferred poly(tetrafluorethylene) substrate. J. Phys. Chem. B 107 10531– 10539 (2003).CrossRefGoogle Scholar
68.Yannoulis, P., Dudde, R., Frank, K.H. and Koch, E.E.: Orientation of aromatic hydrocarbons on metal surfaces as determined by NEXAFS. Surf. Sci. 189(190), 519–528 (1987).CrossRefGoogle Scholar
69.Yannoulis, P., Frank, K.H. and Koch, E.E.: Azimuthal orientation of tetracene adsorbed on Cu(110) single crystal surfaces. Surf. Sci. 243 58–64 (1991).CrossRefGoogle Scholar
70.Lukas, S., Vollmer, S., Witte, G. and Wöll, C.: Adsorption of acenes on flat and vicinal Cu(111) surfaces: Step induced formation of lateral order. J. Chem. Phys. 114, 10123 (2001).CrossRefGoogle Scholar
71.Schuerlein, T.J., Schmidt, A., Lee, P.A., Nebesny, K.W. and Armstrong, N.R.: Large molecule epitaxy on single crystal metals, insulators and single crystal and MBE-grown layered semiconductors. Jpn. J. Appl. Phys. 34 3837–3845 (1995).CrossRefGoogle Scholar
72.Lukas, S., Witte, G. and Wöll, C.: Novel mechanism for molecular self-assembly on metal substrates: Unidirectional rows of pentacene on Cu(110) produced by a substrate-mediated repulsion. Phys. Rev. Lett. 88, 28301 (2002).CrossRefGoogle ScholarPubMed
73.Witte, G. and Wöll, C.: Organic surface science: Creating order and complexity using self-assembly. Phase Transitions 76 291–305 (2003).CrossRefGoogle Scholar
74.Söhnchen, S., Lukas, S., and Witte, G., Epitaxial growth of pentacene films on Cu(110), J. Chem. Phys., in print, (2004).CrossRefGoogle Scholar
75.Chen, Q., McDowell, A.J. and Richardson, N.V.: Ordered structures of tetracene and pentacene on Cu(110) surfaces. Langmuir 19, 10164 (2003).CrossRefGoogle Scholar
76.Lukas, S., Söhnchen, S., Witte, G. and Wöll, C.: Epitaxial growth of pentacene films on metal surfaces. ChemPhysChem. 5 266–270 (2004).CrossRefGoogle ScholarPubMed
77.Casalis, L., Danisman, M.F., Nickel, B., Bracco, G., Toccoli, T., Iannotta, S. and Scoles, G.: Hyperthermal molecular beam deposition of highly ordered organic thin films. Phys. Rev. Lett. 90, 206101 (2003).CrossRefGoogle ScholarPubMed
78.Guaino, P., Carty, D., Hughes, G., Moriarty, P. and Cafolla, A.A.: Scanning tunneling microscopy study of pentacene adsorption on Ag/Si(111)-(root 3 x root 3)R30°. Appl. Surf. Sci. 212 537–541 (2003).Google Scholar
79.Böhringer, M., Schneider, W.D. and Berndt, R.: Scanning tunneling microscope-induced molecular motion and its effect on the image formation. Surf. Sci. 408 72–85 (1998).CrossRefGoogle Scholar
80.France, C.B., Schroeder, P.G., Forsythe, J.C. and Parkinson, B.A.: Scanning tunneling microscopy study of the coverage-dependent structures of pentacene on Au(111). Langmuir 19 1274–1281 (2003).CrossRefGoogle Scholar
81.Harten, U., Lahee, A.M., Toennies, J.P. and Wöll, C.: Observation of a soliton reconstruction of Au(111) by high-resolution helium-atom diffraction. Phys. Rev. Lett. 54, 2619 (1985).CrossRefGoogle ScholarPubMed
82.France, C.B., Schröder, P.G. and Parkinson, B.A.: Direct observation of a widely spaced periodic row structure at the pentacene/Au(111) interface using scanning tunneling microscopy. Nano Lett. 2 693–696 (2002).CrossRefGoogle Scholar
83.Kang, J.H. and Zhu, X.Y.: Pi-stacked pentacene thin films grown on Au(111). Appl. Phys. Lett. 82, 3248 (2003).CrossRefGoogle Scholar
84.Menozzi, C., Corradini, V., Cavallini, M., Biscarini, B., Betti, M.G. and Mariani, C.: Pentacene self-aggregation at the Au(110)-(1x2) surface: Growth morphology and interface electronic states. Thin Solid Films 428 227–231 (2003).CrossRefGoogle Scholar
85.Tanaka, J.: The electronic spectra of aromatic molecular crystals. II. The crystal structure and spectra of perylene. Bull. Chem. Soc. Jpn. 36, 1237 (1963).CrossRefGoogle Scholar
86.Krygowski, T.M., Ciesielski, A., Swirska, B. and Leszcynski, P.: Variation of molecular-geometry and aromatic character of chrysene and perylene in their Eda complexes—refinement of X-ray crystal and molecular-structure of chrysene and perylene. Pol. J. Chem. 68 2097–2107 (1994).Google Scholar
87.Wang, D., Wan, L-J., Xu, Q-M., Wang, C. and Bai, C-L.: Adlayer structures of pyrene and perylene on Cu(111): An in situ STM study. Surf. Sci. 478 L320–L326 (2001).CrossRefGoogle Scholar
88.Seidel, C., Ellerbrake, R., Gross, L. and Fuchs, H.: Structural transitions of perylene and coronene on silver and gold surfaces: A molecular-beam epitaxy LEED study. Phys. Rev. B 64, 195418 (2001).CrossRefGoogle Scholar
89.Gross, L., Seidel, C. and Fuchs, H.: Organic monolayers with uniform domain orientation and reduced antiphase boundaries— MBE of perylene on Au(110). Org. Electr. 3 1–7 (2002).CrossRefGoogle Scholar
90.Liu, X., Mohamed, S.H., Ngaruiya, J.M., Wuttig, M. and Michely, T.: Modifying the growth of organic thin films by a self-assembled monolayer. J. Appl. Phys. 93 4852–4855 (2003).CrossRefGoogle Scholar
91.Taborski, J., Väterlein, P., Dietz, H., Zimmermann, U. and Umbach, E.: NEXAFS investigations on ordered adsorbate layers of large aromatic molecules. J. Electron Spectr. 75 129–147 (1995).CrossRefGoogle Scholar
92.Unwin, P.J. and Jones, T.S.Vibrational properties of ordered perylene thin films on GaAs(100) and InAs(111) Surf. Sci. 532, 1011 (2003)Google Scholar
93.Chen, Q., Rada, T., McDowall, A. and Richardson, N.V.: Epitaxial growth of a crystalline organic semiconductor: Perylene/Cu(110). Chem. Mater. 14 743–749 (2002).CrossRefGoogle Scholar
94.Zimmermann, U., Schnitzler, G., Wüstenhagen, V., Karl, N., Dudde, R., Koch, E-E. and Umbach, E.: NEXAFS and ARUP spectroscopy of an organic single crystal. Mol. Cryst. Liqu. Cryst. 339 231–259 (2000).Google Scholar
95.Hänel, K., Söhnchen, S., Lukas, S., Beernink, G., Birkner, A., Strunskus, T., Witte, G., and Wöll, C., Organic molecular beam epitaxy of perylene on Cu(110): Results from NEXAFS, XPS and AFM, J. Mat. Res. 19, 2049 (2004).CrossRefGoogle Scholar
96.Keil, M. and Samori, P., Santos, D. d., Kugler, T., Stafstrom, S., Brand, J.D., Müllen, K., Bredas, J.L., Rabe, J.P., and Salaneck, W.R., Influence of the morphology on the electronic structure of hexa-peri-hexabenzocoronene thin films. J. Phys. Chem. B 104, 3967 (2000).CrossRefGoogle Scholar
97.Zimmermann, U. and Karl, N.: Epitaxial growth of coronene and hexa-peri-benzocoronene on MoS2(0001) and graphite (0001): A LEED study of molecular size effects. Surf. Sci. 268 296306 (1992).CrossRefGoogle Scholar
98.Goddard, R., Haenel, M.W., Herndon, W.C., Krüger, C. and Zander, M.: Crystallization of large planar polycyclic aromatic-hydrocarbons—the molecular and crystal-structures of hexabenzo[BC,EF,HI,KL,NO,QR]coronene and benzo[L,2,3,-BC/4,5,6-B′C′] dicoronene, J. Am.Chem. Soc. 117 30–41 (1995).CrossRefGoogle Scholar
99.Toerker, M., Fritz, T., Proehl, H., Gutierrez, R., Grobmann, F. and Schmidt, R.: Electronic transport trough occupied and unoccupied states of an organic molecule on Au: Experiment and theory. Phys. Rev. B 65, 245422 (2002).CrossRefGoogle Scholar
100.Sellam, F., Schmitz-Hübsch, T., Toerker, M., Mannsfeld, S., Proehl, H., Fritz, T., Leo, K., Simpson, C. and Müllen, K.: LEED and STM investigations of organic-organic heterostructures grown by molecular beam epitaxy. Surf. Sci. 478 113–121 (2001).CrossRefGoogle Scholar
101.Ruffieux, P., Groning, P., Bielmann, M., Simpson, C., Müllen, K., Schlapbach, L. and Groning, P.: Supramolecular columns of hexabenzocoronenes on copper and gold(111) surfaces. Phys. Rev. B 66, 073409 (2002).CrossRefGoogle Scholar
102.Kubowicz, S., Pietsch, U., Watson, M.D., Tchebotareva, N., Müllen, K. and Thünemann, A.F.: Thin layers of columns of an amphiphilic hexa-peri-hexabenzocoronene at silicon wafer surfaces. Langmuir 19 5036–5041 (2003).Google Scholar
103.Watson, M.D., Fechtenkötter, A. and Müllen, K.: Big is beautiful— “aromaticity” revisited from the viewpoint of macromolecular and supramolecular benzene chemistry. Chem. Rev. 101 1267–1300 (2001).CrossRefGoogle ScholarPubMed
104.Pflaum, J., Frey, W. and Karl, N. (in preparation)Google Scholar
105.Dürr, A.C., Schreiber, F., Kelsch, M., Carstanjen, H.D. and Dosch, H.: Morphology and thermal stability of metal contacts on crystalline organic thin films. Adv. Mater. 14, 961 (2002).3.0.CO;2-X>CrossRefGoogle Scholar
106.Dürr, A.C., Schreiber, F., Münch, M., Karl, N., Krause, B., Kruppa, V. and Dosch, H.: High structural order in thin films of the organic semiconductor diindenoperylene. Appl. Phys. Lett. 81, 2276 (2002).CrossRefGoogle Scholar
107.Dürr, A.C., Schreiber, F., Ritley, K.A., Kruppa, V., Krug, J., Dosch, H. and Struth, B.: Rapid roughening in thin film growth of an organic semiconductor (diindenoperylene). Phys. Rev. Lett. 90, 016104 (2003).CrossRefGoogle ScholarPubMed
108.Dürr, A.C., Koch, N., Kelsch, M., Rühm, A., Ghijsen, J., Johnson, R.L., Pireaux, J.J., Schwartz, J., Schreiber, F., Dosch, H. and Kahn, A.: Interplay between morphology, structure, and electronic properties at diindenoperylene-gold interfaces. Phys. Rev. B 68, 115428 (2003).CrossRefGoogle Scholar
109.Ogawa, T., Kuwamoto, K., Isoda, S., Kobayashi, T. and Karl, N.: 3,4: 9,10-perylenetetracarboxylic dianhydride (PTCDA) by electron crystallography. Acta Crystallogr. B 55 123–130 (1999).CrossRefGoogle Scholar
110.Forrest, S.R., Kaplan, M.L. and Schmidt, P.H.: Organic-on-inorganic semiconductor contact barrier diodes. I. Theory with applications to organic thin films and prototype devices. J. Appl. Phys. 55 1492–1507 (1984).CrossRefGoogle Scholar
111.Möbus, M., Karl, N. and Kobayashi, T.: Structure of perylene-tetracarboxylic-dianhydride thin films on alkali halide crystal substrates. J. Cryst. Growth 116, 495 (1992).CrossRefGoogle Scholar
112.Ludwig, C., Gomp, B., Glatz, W., Petersen, J., Eisenmenger, W., Möbus, M., Zimmermann, U. and Karl, N.: Video-STM, LEED and X-ray diffraction investigations of PTCDA on graphite, Z. Phys.-Cond. Matter. 86 397–404 (1992).Google Scholar
113.Hirose, Y., Forrest, S.R. and Kahn, A.: Quasiepitaxial growth of the organic molecular semiconductor 3,4,9,10-perylenetetracarboxylic dianhydride. Phys. Rev. B 52, 14040 (1995).CrossRefGoogle Scholar
114.Umbach, E., Sokolowski, M. and Fink, R.: Substrate-interaction, long-range order, and epitaxy of large organic adsorbates. Appl. Phys. A 63 565–576 (1996).CrossRefGoogle Scholar
115.Fenter, P., Schreiber, F., Zhou, L., Eisenberger, P. and Forrest, S.R.: In situ studies of morphology, strain, and growth modes of a molecular organic thin film. Phys. Rev. B 56 3046–3053 (1997).CrossRefGoogle Scholar
116.Chizhov, I., Kahn, A. and Scoles, G.: Initial growth of 3,4,9,10-perylenetetracarboxylic-dianhydride (PTCDA) on Au(111): A scanning tunneling microscopy study. J. Cryst. Growth 208 449–458 (2000).CrossRefGoogle Scholar
117.Schmitz-Hübsch, T., Fritz, T., Staub, R., Back, A., Armstrong, N.R. and Leo, K.: Structure of 3,4,9,10-perylene-tetracarboxylic-dianhydride grown on reconstructed and unreconstructed Au(100). Surf. Sci. 437 163–172 (1999).CrossRefGoogle Scholar
118.Glöckler, K., Seidel, C., Soukopp, A., Sokolowski, M., Umbach, E., Böhringer, M., Berndt, R. and Schneier, W.D.: Highly ordered structures and submolecular scanning tunnelling microscopy contrast of PTCDA and DM-PBDCI monolayers on Ag(111) and Ag(110). Surf. Sci. 405 1–20 (1998).CrossRefGoogle Scholar
119.Tautz, F.S., Eremtchenko, M., Schäfer, J.A., Sokolowski, M., Shklover, V. and Umbach, E.: Strong electron-phonon coupling at a metal/organic interface: PTCDA/Ag(111). Phys. Rev. B 65, 125405 (2002).CrossRefGoogle Scholar
120.Eremtchenko, M., Schäfer, J.A. and Tautz, F.S.: Understanding and tuning the epitaxy of large aromatic adsorbates by molecular design. Nature 425, 602 (2003).CrossRefGoogle ScholarPubMed
121.Krause, B., Dürr, A.C., Ritley, K.A., Schreiber, F., Dosch, H. and Smigies, D.: On the coexistence of different polymorphs in organic epitaxy: α and β phase of PTCDA on AG(111). App. Surf. Sci. 175–176 332–336 (2001).Google Scholar
122.Krause, B., Dürr, A.C., Ritley, K.A., Dosch, H. and Smigies, D.: Structure and growth morphology of an archetypal system for organic epitaxy: PTCDA on Ag(111). Phys. Rev. B 66, 235404 (2002).CrossRefGoogle Scholar
123.Krause, B., Dürr, A.C., Schreiber, F., Dosch, H. and Seeck, O.H.: Thermal stability and partial dewetting of crystalline organic thin films: 3,4,9,10-perylenetetracarboxylic dianhydride on Ag(111). J. Chem. Phys. 119, 3429 (2003).CrossRefGoogle Scholar
124.Stöhr, M., Gabriel, M. and Möller, R.: Investigation of the growth of PTCDA on Cu(110): an STM study. Surf. Sci. 507, 330 (2002).CrossRefGoogle Scholar
125.Stöhr, M., Gabriel, M. and Möller, R.: Analysis of the three-dimensional structure of a small crystallite by scanning tunneling microscopy: Multilayer films of 3,4,9,10-perylenetetracarboxylic-dianhydride (PTCDA) on Cu(110). Europhys. Lett. 59 423–429 (2002).CrossRefGoogle Scholar
126.Resel, R.: Crystallographic studies on hexaphenyl thin films—a review. Thin Solid Films 433 1–11 (2003).CrossRefGoogle Scholar
127.Resel, R. and Leising, G.: High resolution X-ray diffraction studies on hexaphenyl thin films. Surf. Sci. 409 302–306 (1998).CrossRefGoogle Scholar
128.Erlacher, K., Resel, R., Keckes, J., Meghdadi, F. and Leising, G.: Structural properties of hexaphenyl thin films obtained by a rubbing technique. J. Cryst. Growth 206 135–140 (1999).CrossRefGoogle Scholar
129.Yanagi, H. and Okamoto, S.: Orientation-controlled organic electroluminescence of p-sexiphenyl films. Appl. Phys. Lett. 71, 2563 (1997).CrossRefGoogle Scholar
130.Müller, B., Kuhlmann, T., Lischka, K., Schwer, H., Resel, R. and Leising, G.: MBE growth of para-hexaphenyl on GaAs(001)-2x4. Surf. Sci. 418 256–266 (1998).CrossRefGoogle Scholar
131.Yanagi, H. and Morikawa, T.: Self-waveguided blue light emission in p-sexiphenyl crystals epitaxially grown by mask-shadowing vapor deposition. Appl. Phys. Lett. 75, 187 (1999).CrossRefGoogle Scholar
132.Andreev, A., Matt, G., Brabec, C., Sitter, H., Badt, D., Seyringer, H. and Saricifti, N.S.: Highly anisotropically self-assembled structures of para-sexiphenyl grown by hot-wall epitaxy. Adv. Mater. 12, 629 (2000).3.0.CO;2-S>CrossRefGoogle Scholar
133.Balzer, F. and Rubahn, H.G.: Dipole-assisted self-assembly of light-emitting p-nP needles on mica. Appl. Phys. Lett. 79, 3860 (2001).CrossRefGoogle Scholar
134.Andreev, A., Resel, R., Smiligies, D.M., Hoppe, H., Matt, G., Sitter, H., Saricifti, N.S., Meissner, D., Plank, H. and Zrzavecka, O.: Oriented organic semiconductor thin films. Synth. Met. 138 59–63 (2003).CrossRefGoogle Scholar
135.Plank, H., Resel, R., Sitter, H., Andreev, A., Saricifti, N.S., Hlawacek, G., Teichert, C. and Rubahn, H.G.: Molecular alignments in sexiphenyl thin films epitaxially grown on muscovite. Thin Solid Films 443 108–114 (2003).CrossRefGoogle Scholar
136.Balzer, F. and Rubahn, H.G.: Laser-controlled growth of needle-shaped organic nanoaggregates. Nano Lett. 2 747–750 (2002).CrossRefGoogle Scholar
137.Balzer, F., Beerman, J., Bozhevolnyi, S.I., Simonsen, A.C. and Rubahn, H.G.: Optically active organic microrings. Nano Lett. 3 1311–1314 (2003).CrossRefGoogle Scholar
138.Balzer, F., Bordo, V.G., Simonsen, A.C. and Rubahn, H.G.: Isolated hexaphenyl nanofibers as optical waveguides. Appl. Phys. Lett. 82, 10 (2003).CrossRefGoogle Scholar
139.France, C.B. and Parkinson, B.A.: Physical and electronic structure of p-sexiphenyl on Au(111). Appl. Phys. Lett. 82, 1194 (2003).CrossRefGoogle Scholar
140.Müllegger, S., Salzmann, I., Resel, R. and Winkler, A.: Epitaxial growth of quaterphenyl thin films on gold(111). Appl. Phys. Lett. 83, 4536 (2003).CrossRefGoogle Scholar
141.Ziegler, C. and Fichou, D.: Handbook of Oligo-and Polythiophenes, edited by Fichou, D. (Wiley-VCH New York, 1999), pp. 183282Google Scholar
142.Fichou, D.: Structural order in conjugated oligothiophenes and its implications on opto-electronic devices. J. Mater. Chem. 10 571–588 (2000).CrossRefGoogle Scholar
143.Hotta, S. and Waragai, K.: Crystal-structures of oligothiophenes and their relevance to charge-transport. Adv. Mater. 5 896–908 (1993).CrossRefGoogle Scholar
144.Böhme, O., Ziegler, C. and Göpel, W.: Highly ordered ultra-thin α 5-thiophene films on SiO2 and Si(100) + O(N2O). Synth. Met. 67 87–92 (1994).CrossRefGoogle Scholar
145.Oelkrug, D., Egelhaaf, H-J. and Haiber, J.: Electronic spectra of self-organized oligothiophene films with “standing” and “lying” molecular units. Thin Solid Films 284–285 267–270 (1996).Google Scholar
146.Biscarini, F., Samori, P., Greco, O. and Zamboni, R.: Scaling behavior of anisotropic organic thin films grown in high vacuum. Phys. Rev. Lett. 78 2389–2392 (1997).CrossRefGoogle Scholar
147.Lang, P., Horrowitz, G., Valat, P., Garnier, F., Wittmann, J.C. and Lotz, B.: Spectroscopic evidence for a substrate dependent orientation of sexithiophene thin films deposited onto oriented PTFE. J. Phys. Chem. B 101 8204–8211 (1997).CrossRefGoogle Scholar
148.Soukopp, A., Seidel, C., Li, R., Bässler, M., Sokolowski, M. and Umbach, E.: Highly-ordered ultrathin films of quaterthiophene on a Ag(111) surface. Thin Solid Films 284–285 343–346 (1996).Google Scholar
149.Li, R., Bäuerle, P. and Umbach, E.: Vibrational and geometric structure of quaterthiophene on Ag(111). Surf. Sci. 331–333 100–104 (1995).Google Scholar
150.Soukopp, A., Glöckler, K., Bäuerle, P., Sokolowski, M. and Umbach, E.: High order and submolecular imaging of end-capped quinquethiophene on Ag(111). Adv. Mater. 8, 902 (1996).CrossRefGoogle Scholar
151.Soukopp, A., Glöckler, L., Kraft, P., Schmitt, S., Sokolowski, M., Umbach, E., Mena-Osteriz, E., Bäuerle, P. and Hädicke, E.: Superstructure formation of large organic adsorbates on a metal surface: A systematic approach using oligothiophenes on Ag(111). Phys. Rev. B 58, 13882 (1998).CrossRefGoogle Scholar
152.Meyerheim, H.L., Gloege, T., Sokolowski, M., Umbach, E. and Bäuerle, P.: Adsorption-induced distortion of a large π-conjugated molecule studied by surface X-ray diffraction: End-capped quaterthiophene on Ag(111). Europhys. Lett. 52 144–150 (2000).CrossRefGoogle Scholar
153.Nardelli, M.B., Cvetko, D., Renzi, V.D., Floreano, L., Gotter, R., Morgante, A., Peloi, M. and Tommasini, F.: Ordering of a prototypical conjugated molecular system during monolayer growth on the (1x2)-Au(110) surface. Phys. Rev. B 53, 1095 (1996).CrossRefGoogle Scholar
154.Prato, S., Floeano, L., Cvetko, D., Renzi, V.D., Morgante, A., Modesti, S., Biscarini, F., Zamboni, R. and Taliani, C.: Anisotropic ordered planar growth of α-sexithienyl thin films. J. Phys. Chem. B 103 7788–7795 (1999).CrossRefGoogle Scholar
155.Koller, G., Blyth, R.I.R., Sardar, S.A., Netzer, F.P. and Ramsey, M.G.: Growth of ordered bithiophene layers on the p(2x1)O reconstructed Cu(110) surface. Surf. Sci. 536 155–165 (2003).CrossRefGoogle Scholar
156.Nambu, A., Kondoh, H., Nakai, I., Amemiya, K. and Ohta, T.: Film growth and X-ray induced chemical reactions of thiophene adsorbed on Au(111). Surf. Sci. 530 101–110 (2003).CrossRefGoogle Scholar
157.Borghesi, A., Sassella, A., Tubino, R., Destri, S. and Porzio, W.: Organic molecular beam deposition of highly oriented β-tetrahexylsexithiophene films. Adv. Mater. 10, 931 (1998).3.0.CO;2-#>CrossRefGoogle Scholar
158.Leznoff, C.C. and Lever, A.B.P.: Phthalocyanins, Vol. 1–4. 1989–1996 (John Wiley & Sons, Ltd.)Google Scholar
159.Ashida, M.: The orientation overgrowth of metal-phthalocyanines on the surface of single crystals. II. vacuum-condensed films of copper-phthalocyanine on alkali halides. Bull. Chem. Soc. Jpn. 39, 2632 (1966).CrossRefGoogle Scholar
160.Yamashita, A. and Hayashi, T.: Organic molecular beam deposition of metallophthalocyanines for opto-electronics applications. Adv. Mater. 8, 791 (1996).CrossRefGoogle Scholar
161.Hoshi, H., Dann, A.J. and Maruyama, Y.: The structure and properties of phthalocyanine films grown by the molecular beam epitaxy technique. III. Preparation and characterization of lutetium diphthalocyanine films. J. Appl. Phys. 67, 6871 (1990).CrossRefGoogle Scholar
162.Hoshi, H., Fang, S. and Maruyama, Y.: Epitaxial growth of lead phthalocyanine film on KI crystal. J. Appl. Phys. 73 3111–3113 (1993).CrossRefGoogle Scholar
163.Strohmaier, R., Ludwig, C., Petersen, J., Gompf, B. and Eisenmenger, W.: Scanning tunneling microscope investigations of lead-phthalocyanine on MoS2. J. Vac. Sci. Technol. B 14, 1079 (1996).CrossRefGoogle Scholar
164.Kawaguchi, T., Tada, H. and Koma, A.: Structural analysis of epitaxial films of metal phthalocyanines on hydrogen-terminated Si(111) surfaces. J. Appl. Phys. 75, 1486 (1994).CrossRefGoogle Scholar
165.Nakamura, M. and Hiroshi, T.: Molecular arrangement of copper phthalocyanine on Si(001)-(2x1)-H: A high-resolution frictional-force microscopy and molecular mechanics study. Surf. Sci. 398 143–153 (1998).CrossRefGoogle Scholar
166.Nakamura, M., Matsunobe, T. and Tokumoto, H.: Control of in-plane orientation of phthalocyanine molecular columns using vicinal Si(001) - (2x1) - H. J. Appl. Phys. 89 7860–7865 (2001).CrossRefGoogle Scholar
167.Hayashi, T., Yamashita, A., Maruno, T., Fölsch, S., Konami, H. and Hatano, M.: In-plane ordering of a dibenzo[b,t]phthalocyaninato-Zn(II) thin film due to the atomic step arrays on a sapphire (1021) surface. J. Cryst. Growth 156 245–251 (1995).CrossRefGoogle Scholar
168.Osso, J.O., Schreiber, F., Kruppa, V., Dosch, H., Garriga, M., Alonso, M.I. and Cerdeira, F.: Controlled molecular alignment in phthalocyanine thin films on stepped sapphire surfaces. Adv. Funct. Mater. 12, 455 (2002).3.0.CO;2-I>CrossRefGoogle Scholar
169.Ohta, H., Kambayashi, T., Hiarano, M., Hoshi, H., Ishikawa, K., Takezoe, H. and Hosono, H.: Application of a transparent conductive substrate with an atomically flat and stepped surface to lateral growth of an organic molecule: vanadyl phthalocyanine. Adv. Mater. 15, 1258 (2003).CrossRefGoogle Scholar
170.Buchholz, J.C. and Somorjai, G.A.: The surface structures of phthalocyanine monolayers and vapor-grown films: A low-energy electron diffraction study. J. Chem. Phys. 66, 573 (1977).CrossRefGoogle Scholar
171.Lippel, P.H., Wilson, R.J., Miller, M.D., Wöll, C. and Chiang, S.: High-resolution imaging of copper-phthalocyanine by scanning-tunneling microscopy. Phys. Rev. Lett. 62, 171 (1989).CrossRefGoogle ScholarPubMed
172.Fritz, T., Hara, M., Knoll, W. and Sasabe, H.: STM-investigations on heteroepitaxially grown overlayers of Cu-phthalocyanine on Au(111) surfaces. Mol. Cryst. Liq. Chyst. Sci. Technol. A 252–253 561–570 (1994).Google Scholar
173.Barlow, D.E. and Hipps, K.W.: A scanning tunneling microscopy and spectroscopy study of vanadyl phthalocyanine on Au(111): The effect of oxygen binding and orbital mediated tunneling on the apparent corrugation. J. Phys. Chem. B 104 5993–6000 (2000).CrossRefGoogle Scholar
174.Schäfer, A.H., Seidel, C. and Fuchs, H.: LEED and optical spectroscopy study of an organic epitaxial multilayer film. Adv. Funct. Mater. 11, 193 (2001).3.0.CO;2-L>CrossRefGoogle Scholar
175.Hu, W.P., Liu, Y.Q., Zhou, S.Q., Xu, D.F. and Zhu, D.B.: Highly ordered vacuum-deposited thin films of copper phthalocyanine induced by eletric field. Thin Solid Films 347 299–301 (1999).CrossRefGoogle Scholar
176.Ji, Z.G., Wong, K.W., Tse, P.K., Kwok, R.W.M. and Lau, W.M.: Copper phthalocyanine film grown by vacuum deposition under magnetic field. Thin Solid Films 402 79–82 (2002).CrossRefGoogle Scholar
177.Shtein, M., Gossenberger, H.F., Benziger, J.B. and Forrest, S.R.: Material transport regimes and mechanism for growth of molecular organic thin films using low-pressure organic vapor phase deposition. J. Appl. Phys. 89, 1470 (2000).CrossRefGoogle Scholar
178.Sitter, H., Andreev, A. and Matt, G.: Hot wall epitaxial growth of highly ordered organic epilayers. Synth. Met. 138 9–13 (2003).CrossRefGoogle Scholar