Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-14T19:27:03.837Z Has data issue: false hasContentIssue false

Growth of carbon nanocoils using Fe–Sn–O catalyst film prepared by a spin-coating method

Published online by Cambridge University Press:  23 August 2011

Dawei Li
Affiliation:
School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024, People’s Republic of China
Lujun Pan*
Affiliation:
School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: lpan@dlut.edu.cn
Get access

Abstract

Carbon nanocoils (CNCs) with diameter from 100 to 150 nm have been synthesized by catalytic decomposition of acetylene at 700 °C using Fe–Sn–O catalyst film prepared by a spin-coating method. The CNCs are much smaller in diameter than those synthesized using the catalysts prepared by a sol-gel method and a solution-dipping method. It is found that catalyst films with different morphologies are obtained by changing the spin-coating times, which lead to the formation of different multilayer carbon nanostructures, including CNCs/carbon layer/vertically aligned carbon nanotubes sandwich-like structures, and CNCs/carbon double-layer structures. Based on the experimental results, the growth mechanism of the multilayer carbon nanostructures has been proposed.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Fan, S.S., Chapline, M.G., Franklin, N.R., Tomber, T.W., Cassell, A.M., and Dai, H.J.: Self-oriented regular arrays of carbon nanotubes and their field-emission properties. Science 283, 512 (1999).CrossRefGoogle ScholarPubMed
2.Choi, W.B., Chung, D.S., Kang, J.H., Kim, H.Y., Jin, Y.W., Han, I.T., Lee, Y.H., Jung, J.E., Lee, N.S., Park, G.S., and Kim, J.M.: Fully sealed, high-brightness carbon nanotube field emission display. Appl. Phys. Lett. 75, 3129 (1999).CrossRefGoogle Scholar
3.Choi, G.S., Son, K.H., and Kim, D.J.: Fabrication of high performance carbon nanotube field emitters. Microelectron. Eng. 66, 206 (2003).Google Scholar
4.Bandaru, P.R., Daraio, C., Jin, S., and Rao, A.M.: Novel electrical switching behavior and logic in carbon nanotube Y-junctions. Nat. Mater. 4, 663 (2005).CrossRefGoogle ScholarPubMed
5.Dillon, A.C., Jones, K.M., Bekkedahl, K.K., Kiang, C.H., Bethune, D.S., and Heben, M.J.: Storage of hydrogen in single-walled carbon nanotubes. Nature 386, 377 (1997).CrossRefGoogle Scholar
6.Ihara, S. and Itoh, S.: Helically coiled cage forms of graphitic carbon. Phys. Rev. B 48, 5643 (1993).CrossRefGoogle ScholarPubMed
7.Terrones, M., Hsu, W.K., Hare, J.P., Kroto, H.W., Terrones, H., and Walton, D.R.M.: Graphitic structures: From planar to spheres, toroids and helices. Philos. Trans. R. Soc. London, Ser. A 354, 2025 (1996).Google Scholar
8.Amelinckx, S., Zhang, X.B., Bernaerts, D., Zhang, X.F., Ivanov, V., and Nagy, J.B.: A formation mechanism for catalytically grown helix-shaped graphite nantubes. Science 265, 635 (1994).CrossRefGoogle Scholar
9.Motojima, S., Kawaguchi, M., Nozaki, K., and Iwanaga, H.: Preparation of coiled carbon fibers by catalytic pyrolysis of acetylene, and its morphology and extension characteristics. Carbon 29, 379 (1991).CrossRefGoogle Scholar
10.Hayashida, T., Pan, L.J., and Nakayama, Y.: Mechanical and electrical properties of carbon tubule nanocoils. Physica B 323, 352 (2002).CrossRefGoogle Scholar
11.Treacy, M.M.J., Ebbesen, T.W., and Gibson, J.M.: Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381, 678 (1996).Google Scholar
12.Hokushin, S., Pan, L.J., Konishi, Y., Tanaka, H., and Nakayama, Y.: Field-emission properties and structural changes of a stand-alone carbon nanocoil. Jpn. J. Appl. Phys. 46, 565 (2007).CrossRefGoogle Scholar
13.Tang, N.J., Yang, Y., Lin, K., Zhong, W., Chaktong, A., and Du, Y.W.: Synthesis of plait-like carbon nanocoils in ultrahigh yield, and their microwave absorption properties. J. Phys. Chem. C 112, 10061 (2008).CrossRefGoogle Scholar
14.Okazaki, N., Hosokawa, S., Goto, T., and Nakayama, Y.: Synthesis of carbon tubule nanocoils using Fe–In–Sn–O fine particles as catalysts. J. Phys. Chem. B 109, 17366 (2005).CrossRefGoogle ScholarPubMed
15.Lu, M., Li, H.L., and Lau, K.T.J.: Formation and growth mechanism of dissimilar coiled carbon nanotubes by reduced-pressure catalytic chemical vapor deposition. Phys. Chem. B 108, 6186 (2004).CrossRefGoogle ScholarPubMed
16.Hanus, M.J. and Harris, A.T.: Synthesis of twisted carbon fibers comprised of four intertwined helical strands. Carbon 48, 2989 (2010).CrossRefGoogle Scholar
17.Chiu, H.S., Lin, P.I., Wu, H.C., Hsieh, W.H., Chen, C.D., and Chen, Y.T.: Electron hopping conduction in highly disordered carbon coils. Carbon 47, 1761 (2009).CrossRefGoogle Scholar
18.Pan, L.J., Zhang, M., and Nakayama, Y.: Growth mechanism of carbon nanocoils. J. Appl. Phys. 91, 10058 (2002).CrossRefGoogle Scholar
19.Pan, L.J., Zhang, M., Harada, A., Takano, Y., and Nakayama, Y.: Synthesis of carbon nanocoils using electroplated iron catalyst. AIP Conf. Proc. 590, 19 (2001).CrossRefGoogle Scholar
20.Yu, L.Y., Qin, Y., and Cui, Z.L.: Synthesis of coiled carbon nanofibers by Cu–Ni alloy nanoparticles catalyzed decomposition of acetylene at the low temperature of 241 °C. Mater. Lett. 59, 459 (2005).Google Scholar
21.Tang, N.J., Zhong, W., Au, C., Gedanken, A., Yang, Y., and Du, Y.W.: Large-scale synthesis, annealing, purification, and magnetic properties of helical carbon nanotubes with symmetrical structures. Adv. Funct. Mater. 17, 1542 (2007).Google Scholar
22.Haubner, R., Schwinger, W., Haring, J., and Schöftner, R.: Sol–gel preparation of catalyst particles on substrates for hot-filament CVD nanotube deposition. Diamond Relat. Mater. 17, 1452 (2008).CrossRefGoogle Scholar
23.Li, D.W., Pan, L.J., Qian, J.J., and Liu, D.P.: Highly efficient synthesis of carbon nanocoils by catalyst particles prepared by a sol-gel method. Carbon 48, 170 (2010).CrossRefGoogle Scholar
24.Tang, N.J., Wen, J.F., Zhang, Y., Liu, F.X., Lin, K.J., and Du, Y.W.: Helical carbon nanotubes: Catalytic particle size-dependent growth and magnetic properties. ACS Nano 4, 241 (2010).Google Scholar
25.Li, D.W., Pan, L.J., Liu, D.P., and Yu, N.S.: Relationship between geometric structures of catalyst particles and growth of carbon nanocoils. Chem. Vap. Deposition 16, 166 (2010).CrossRefGoogle Scholar
26.Li, Y., Kim, W., Zhang, Y.G., Rolandi, M., Wang, D.W., and Dai, H.J.: Growth of single walled carbon nanotubes from discrete catalytic nanoparticles of various sizes. J. Phys. Chem. B 105, 11424 (2001).CrossRefGoogle Scholar
27.Duesberg, G.S., Graham, A.P., Liebau, M., Seidel, R., Unger, E., Kreupl, F., and Hoenlein, W.: Growth of isolated carbon nanotubes with lithographically defined diameter and location. Nano Lett. 3, 257 (2003).CrossRefGoogle Scholar
28.Futaba, D.N., Hata, K., Yamada, T., Mizuno, K., Yumura, M., and Iijima, S.: Kinetics of water-assisted single-walled carbon nanotube synthesis revealed by a time-evolution analysis. Phys. Rev. Lett. 95, 056104 (2005).Google Scholar
29.Lee, D.H., Lee, W.J., and Kim, S.O.: Vertical single-walled carbon nanotube arrays via block copolymer lithography. Chem. Mater. 21, 1368 (2009).CrossRefGoogle Scholar