Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-14T19:02:58.615Z Has data issue: false hasContentIssue false

Growth of rutile TiO2 nanorods on anatase TiO2 thin films on Si-based substrates

Published online by Cambridge University Press:  29 June 2011

Jinsong Wu*
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208; and The Northwestern University Atomic and Nanoscale Characterization Experimental Center, Northwestern University, Evanston, Illinois 60208
Shihhan Lo
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208
Kai Song
Affiliation:
The Northwestern University Atomic and Nanoscale Characterization Experimental Center, Northwestern University, Evanston, Illinois 60208
Baiju K. Vijayan
Affiliation:
Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois 60208
Wenyun Li
Affiliation:
The Northwestern University Atomic and Nanoscale Characterization Experimental Center, Northwestern University, Evanston, Illinois 60208
Kimberly A. Gray
Affiliation:
Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois60208
Vinayak P. Dravid
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208; and The Northwestern University Atomic and Nanoscale Characterization Experimental Center, Northwestern University, Evanston, Illinois 60208
*
a)Address all correspondence to this author. e-mail: jinsong-wu@northwestern.edu
Get access

Abstract

Synthesis of titania (TiO2) nanorods on various substrates has recently attracted attention for energy and environmental applications. Herein, we report growth of nanostructured TiO2 on Si(111) and glass borosilicate substrates by a two-step method. A thin film of anatase TiO2 was first laid down by spin coating and annealing, followed by the growth of rutile TiO2 nanorods with a hydrothermal method. To understand the role of the polycrystalline anatase TiO2 seed layer, we selected a relatively high temperature for the hydrothermal reaction, e.g., 175 °C at which no rutile TiO2 nanorods could grow without the precoated anatase TiO2 layer. The morphology and microstructure of both the polycrystalline anatase and rutile nanorod layers were characterized by electron microscopy and x-ray powder diffraction. Such a two-step fabrication method makes it possible to grow TiO2 nanorods on almost any substrate.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Liu, Z., Zhang, X., Nishimoto, S., Murakami, T., and Fujishima, A.: Efficient photocatalytic degradation of gaseous acetaldehyde by highly ordered TiO2 nanotube arrays. Environ. Sci. Technol. 42, 8547 (2008).CrossRefGoogle ScholarPubMed
2.Fujishima, A., Zhang, X., and Tryk, D.A.: TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 63, 515 (2008).CrossRefGoogle Scholar
3.Chen, X. and Mao, S.S.: Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891 (2007).CrossRefGoogle ScholarPubMed
4.Chen, L., Graham, M.E., Li, G., and Gray, K.A.: Fabricating highly active mixed TiO2 photocatalysts by reactive DC magnetron sputter deposition. Thin Solid Films 515, 1176 (2006).CrossRefGoogle Scholar
5.Fujishima, A. and Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972).CrossRefGoogle Scholar
6.Fujishima, A. and Honda, K.: Studies on photosensitive electrode reactions. Bull. Chem. Soc. Jpn. 44, 1148 (1971).CrossRefGoogle Scholar
7.O’Regan, B. and Gratzel, M.: A low cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737 (1991).CrossRefGoogle Scholar
8.Mor, G.K., Shankar, K., Paulose, M., Varghese, O.K., and Grimes, C.A.: Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett. 6, 215 (2006).CrossRefGoogle ScholarPubMed
9.Kongkanand, A., Tvrdy, K., Takechi, K., Kuno, M.K., and Kamat, P.V.: Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture. J. Am. Chem. Soc. 130, 4007 (2008).CrossRefGoogle ScholarPubMed
10.Vijayan, B., Dimitrijevic, N.M., Rajh, T., and Gray, K.: Effect of calcination temperature on the photocatalytic reduction and oxidation processes of hydrothermally synthesized titania nanotubes. J. Phys. Chem. C 114, 12994 (2010).CrossRefGoogle Scholar
11.Dimitrijevic, N.M., Saponjic, Z.V., Rabatic, B.M., Poluektov, O.G., and Rajh, T.: Effect of size and shape of nanocrystalline TiO2 on photogenerated charges. An EPR study. J. Phys. Chem. C 111, 14597 (2007).CrossRefGoogle Scholar
12.Hurum, D.C., Agrios, A.G., Gray, K.A., Rajh, T., and Thurnauer, M.C.: Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR. J. Phys. Chem. B 107, 4545 (2003).CrossRefGoogle Scholar
13.Chen, C.A., Chen, Y.M., Korotcov, A., Huang, Y.S., Tsai, D.S., and Tiong, K.K.: Growth and characterization of well-aligned densely-packed rutile TiO2 nanocrystals on sapphire substrate via metal-organic chemical vapor deposition. Nanotechnology 19, 075611 (2008).CrossRefGoogle ScholarPubMed
14.Wu, J.-J. and Yu, C.-C.: Aligned TiO2 nanorods and nanowalls. J. Phys. Chem. B 108, 3377 (2004).CrossRefGoogle Scholar
15.Wu, J.-M., Shih, H.C., Tseng, Y.-K., Hsu, C.-L., and Tsay, C.-Y.: Synthesizing and comparing the photocatalytic activities of single-crystalline TiO2 rutile nanowires and mesoporous anatase paste. J. Electrochem. Soc. 154, H157 (2007).CrossRefGoogle Scholar
16.Wu, J.-M., Shih, H.C., and Wu, W.-T.: Formation and photoluminescence of single-crystalline rutile TiO2 nanowires synthesized by thermal evaporation. Nanotechnology 17, 105 (2006).CrossRefGoogle Scholar
17.Smith, W., Mao, S., Lu, G., Catlett, A., Chen, J., and Zhao, Y.-P.: The effect of Ag nanoparticle loading on the photocatalytic activity of TiO2 nanorod arrays. Chem. Phys. Lett. 485, 171 (2010).CrossRefGoogle Scholar
18.Li, Y., Fang, X.S., Koshizaki, N., Sasaki, T., Li, L., Gao, S.Y., Shimizu, Y., Bando, Y., and Golberg, D.: Periodic TiO2 nanorod arrays with hexagonal nonclose-packed arrangements: Excellent field emitters by parameter optimization. Adv. Funct. Mater. 19, 2467 (2009).CrossRefGoogle Scholar
19.Feng, X., Shankar, K., Varghese, O.K., Paulose, M., Latempa, T.J., and Grimes, C.A.: Vertical aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: Synthesis details and applications. Nano Lett. 8, 3781 (2008).CrossRefGoogle ScholarPubMed
20.Han, Y., Wu, G., Wang, M., and Chen, H.Z.: The growth of a c-axis highly oriented sandwiched TiO2 film with superhydrophilic properties without UV irradiation on SnO: F substrate. Nanotechnology 20, 235605 (2009).CrossRefGoogle ScholarPubMed
21.Liu, B. and Aydil, E.S.: Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J. Am. Chem. Soc. 131, 3985 (2009).CrossRefGoogle ScholarPubMed
22.Kumar, A., Madaria, A.R., and Zhou, C-W.: Growth of aligned single-crystalline rutile TiO2 nanowires on arbitrary substrate and their application in dye-sensitized solar cells. J. Phys. Chem. C 114, 7787 (2010).CrossRefGoogle Scholar
23.Wang, H.-E., Chen, Z., Leung, Y.H., Luan, C., Liu, C., Tang, Y., Yan, C., Zhang, W., Zapien, J.A., Bello, I., and Lee, S.-T.: Hydrothermal synthesis of ordered single-crystalline rutile TiO2 nanorod arrays on different substrates. Appl. Phys. Lett. 96, 263104 (2010).CrossRefGoogle Scholar
24.Prieto-Mahaney, O.O., Murakami, N., Abe, R., and Ohtani, B.: Correlation between photocatalytic activities and structural and physical properties of titanium (IV) oxide powders. Chem. Lett. 38, 238 (2009).CrossRefGoogle Scholar
25.Kim, S.J., Lee, J.K., Lee, E.G., Lee, H.G., and Lee, K.S.: Photocatalytic properties of rutile TiO2 acicular particles in aqueous 4-chlorophenol solution. J. Mater. Res. 18, 729 (2003).CrossRefGoogle Scholar
26.Habibi, M.H. and Vosooghian, H.: Photocatalytic degradation of some organic sulfides as environmental pollutants using titanium dioxides suspension. J. Photochem. Photobiol. A 174, 45 (2005).CrossRefGoogle Scholar
27.Zachariah, A., Baiju, K.V., Shukla, S., Deepa, K.S., James, J., and Warrier, K.G.K.: Synergistic effect photocatalysis as observed for mixed-phase nanocrystalline titania processed via sol-gel solvent mixing and calcination. J. Phys. Chem. C 112, 11345 (2008).CrossRefGoogle Scholar
28.Li, G.H., Ciston, S., Saponjic, Z.V., Chen, L., Dimitrijevic, N.M., Rajh, T., and Gray, K.A.: Synthesizing mixed-phase TiO2 nanocomposites using a hydrothermal method for photo-oxidation and photoreduction applications. J. Catal. 253, 105 (2008).CrossRefGoogle Scholar
29.Miyagi, T., Kamei, M., Mitsuhashi, T., Ishigaki, T., and Yamazaki, A.: Charge separation at the rutile/anatase interface: A dominant factor of photocatalytic activity. Chem. Phys. Lett. 390, 399 (2004).CrossRefGoogle Scholar
30.Kandiel, T.A., Dillert, R., Feldhoff, A., and Bahnemann, D.W.: Direct synthesis of photocatalytically active rutile TiO2 nanorods partly decorated with anatase nanoparticles. J. Phys. Chem. C 114, 4909 (2010).CrossRefGoogle Scholar
31.Li, G.H., Dimitrijevic, N.M., Chen, L., Nichols, J.M., Rajh, T., and Gray, K.A.: The important role of tetrahedral Ti4+ sites in the phase transformation and photocatalytic activity of TiO2 nanocomposites. J. Am. Chem. Soc. 130, 5402 (2008).CrossRefGoogle ScholarPubMed
32.Li, G.H. and Gray, K.A.: The solid-solid interface: Explaining the high and unique photocatalytic reactivity of TiO2-based nanocomposite materials. Chem. Phys. 339, 173 (2007).CrossRefGoogle Scholar
33.Gribb, A.A. and Banfield, J.F.: Particle size effects on transformation kinetics and phase stability in nanocrystalline TiO2. Am. Mineral. 82, 717 (1997).CrossRefGoogle Scholar
34.Cheng, H.M., Ma, J.M., Zhao, Z.G., and Qi, L.M.: Hydrothermal preparation of uniform nanosize rutile and anatase particles. Chem. Mater. 7, 66 (1995).CrossRefGoogle Scholar