Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-28T16:09:41.605Z Has data issue: false hasContentIssue false

High corrosion resistant ZrC films synthesized by ion-beamassisted deposition

Published online by Cambridge University Press:  31 January 2011

Xiao-Ming He
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Li Shu
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Hai-Bo Li
Affiliation:
Department of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
Duan Weng
Affiliation:
Department of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
Get access

Abstract

ZrC films with high hardness were deposited on A3 steel by ion-beam-assisted deposition and had a corrosion rate more than two orders less and a corrosion potential 0.19 V greater than those of the bare A3 steel. The corrosion current of ZrC films was 10 times less and the polarization resistance at least 7.82 times higher than those of both Teflon and ZrN films, respectively. The experimental results confirmed that ZrC films notably enhanced the corrosion resistance of steels.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Mackie, W. A., Xie, T.B., and Davis, P. R., J. Vac. Sci. Technol. B 13 (6), 2459 (1995).CrossRefGoogle Scholar
2.Edamoto, K., Anazawa, T., Tokumitsu, S., Tanabe, A., Sekine, R., Miyazaki, E., Kato, H., and Otani, S., Solid State Commun. 97 (5), 435 (1996).CrossRefGoogle Scholar
3.Tessner, T.C. and Davis, P.R., J. Vac. Sci. Technol. A 11 (1), 1 (1993).CrossRefGoogle Scholar
4.Bruckner, J. and Mäntylä, T., Surf. Coat. Technol. 59, 166 (1993).CrossRefGoogle Scholar
5.Smith, D. C., Rubiano, R. R., Healy, M. D., and Springer, R.W., in Chemical Perspectives of Microelectronic Materials III, edited by Abernathy, C. R., Bates, C.W., Bohling, D.A., and Hobson, W. S. (Mater. Res. Soc. Symp. Proc. 282, Pittsburgh, PA, 1993), p. 643.Google Scholar
6.Varacalle, D. J. Jr, Lundberg, L. B., Herman, H., Bancke, G., and Riggs, W. L. II, Surf. Coat. Technol. 68/69, 86 (1994).Google Scholar
7.He, X-M., Shu, L., Li, H-B., Li, H-D., and Lee, S-T., J. Vac. Sci. Technol. A 16 (4), 2337 (1998).CrossRefGoogle Scholar
8.Wang, L. D., Li, H. B., He, J. L., He, X. M., Li, W. Z., Wang, Y.H., and Li, H. D., Mater. Lett. 33 (1–2), 77 (1997).CrossRefGoogle Scholar
9.He, J. H., Bai, X. D., Ma, C.L., and Chen, H.M., Nucl. Instrum. Methods BlOO (1), 59 (1995).CrossRefGoogle Scholar
10.Jones, D.A., Principles and Prevention of Corrosion (Macmillan, New York, 1992), p. 75, 365.Google Scholar
11.Lillard, R. S., Butt, D. P., Taylor, T.N., Walter, K. C., and Nastasi, M., Corrosion Sci. 39 (9), 1605 (1997).CrossRefGoogle Scholar
12.Lei, M. K. and Zhang, Z. L., J. Vac. Sci. Technol. A 15 (2), 421 (1997).Google Scholar