Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-28T01:00:57.108Z Has data issue: false hasContentIssue false

High resolution transmission electron microscopy study of interface structures and growth defects in epitaxial Bi2Sr2Can−1CunO4+2n + δ films on SrTiO3 and LaAlO3

Published online by Cambridge University Press:  31 January 2011

N. D. Zakharov
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle/Saale, Germany
D. Hesse
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle/Saale, Germany
J. Auge
Affiliation:
Institut für Halbleitertechnik II, RWTH Aachen, Templergraben 55, D-52056 Aachen, Germany
H. G. Roskos
Affiliation:
Institut für Halbleitertechnik II, RWTH Aachen, Templergraben 55, D-52056 Aachen, Germany
H. Kurz
Affiliation:
Institut für Halbleitertechnik II, RWTH Aachen, Templergraben 55, D-52056 Aachen, Germany
H. Hoffschulz
Affiliation:
2. Physikalisches Institut, RWTH Aachen, Templergraben 55, D-52056 Aachen, Germany
J. Dreβen
Affiliation:
2. Physikalisches Institut, RWTH Aachen, Templergraben 55, D-52056 Aachen, Germany
H. Stahl
Affiliation:
2. Physikalisches Institut, RWTH Aachen, Templergraben 55, D-52056 Aachen, Germany
G. Güntherodt
Affiliation:
2. Physikalisches Institut, RWTH Aachen, Templergraben 55, D-52056 Aachen, Germany
Get access

Abstract

The defect structure of epitaxial, c-oriented Bi2Sr2Can−1CunO4+2n (BSCCO) thin films grown by dc-sputtering and layer-by-layer MBE on SrTiO3 and LaAlO3 single crystal substrates was investigated by high-resolution transmission electron microscopy (HRTEM). Particular emphasis was put on the structure of the film/substrate interface. The films grown by dc-sputtering show a rather perfect structure involving a regular stacking of the unit cells. In spite of this regularity, there are many defects, such as twins, chemical stacking faults, and precipitates, as well as interfacial dislocations accommodating the film/substrate lattice misfit. The MBE-grown films contain twins and interfacial dislocations, but most prominent are precipitates of various size and rather high number density. Composition and structure of the precipitates were analyzed. Interfacial dislocations were found to be located in the films at a distance of up to 3 nm from the film/substrate interface. The experiments showed that the quality of the film/substrate interface in MBE-grown films is considerably higher with respect to smoothness, sharpness, and regularity, if the layer-by-layer MBE process starts with a Sr–O layer instead of a Bi–O layer. This observation is in correspondence to the observed interface structure of the dc-sputtered films, where the first film layer was a Sr–O layer, not a Bi–O layer, in spite of the films being sputtered from a composite target. A structure model of the Bi2Sr2Can−1CunO4+2n/(100)SrTiO3 interface is proposed. The prolonged MBE process was shown to imply a chemical interaction between the SrTiO3 substrate and the growing film, resulting in the formation of Sr-rich phases in the near-interface substrate regions.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Roas, B., Schultz, L., and Endres, G., Appl. Phys. Lett. 53, 1557 (1988).CrossRefGoogle Scholar
2. Streiffer, S. K., Lairson, B. M., Eom, C. B., Clemens, B. M., Bravman, J. C., and Geballe, T. H., Phys. Rev. B 43, 13007 (1991).CrossRefGoogle Scholar
3. Schmitt, P., Schultz, L., and Saemann-Ischenko, G., Physica C 168, 475 (1990).CrossRefGoogle Scholar
4. Amrein, T., Kabius, B., Burger, J., Saemann-Ischenko, G., Schultz, L., and Urban, K., J. Alloys Compounds 195, 129 (1993).CrossRefGoogle Scholar
5. Zhang, X. F., Kabius, B., Urban, K., Schmitt, P., Schultz, L., and Saemann-Ischenko, G., Physica C 183, 379 (1991).CrossRefGoogle Scholar
6. Zakharov, N. D., Hesse, D., Nouvertné, F., Auge, J., Hoffschulz, H., Roskos, H. G., Kurz, H., and Güntherodt, G., Physica C 245, 84 (1995).CrossRefGoogle Scholar
7. Zhang, X. F., J. Mater. Res. 10, 1872 (1995).CrossRefGoogle Scholar
8. Wen, J. G., Miroshita, T., Koshizuka, N., Traeholt, C., and Zandbergen, H. W., Appl. Phys. Lett. 66, 1830 (1995).CrossRefGoogle Scholar
9. Matsumoto, T., Tanaka, H., Kawai, T., and Kawai, S., Surf. Sci. Lett. 278, L153 (1992).Google Scholar
10. Liang, Y. and Bonnell, D. A., Surf. Sci. Lett. 285, L510 (1993).Google Scholar
11. Auge, J., Rüdiger, U., Frank, H., Roskos, H. G., Güntherodt, G., and Kurz, H., Appl. Phys. Lett. 64, 378 (1994).CrossRefGoogle Scholar
12. Eckstein, J. N., Bozovic, I., Dessenneck, K. E., Schlom, D. G., Harris, J. S. Jr.., and Baumann, S. M., Appl. Phys. Lett. 57, 931 (1990).CrossRefGoogle Scholar
13. Traeholt, C., Wen, J. G., Svetchnikov, V., Delsing, A., and Zandbergen, H. W., Physica C 206, 318 (1993).CrossRefGoogle Scholar
14. Liang, J., Chen, Z., Wu, F., and Xie, S., Solid State Commun. 75, 247 (1990).CrossRefGoogle Scholar
15. Majewski, P., Hettich, B., and Schulze, K., Physica C 185189, 469 (1991).CrossRefGoogle Scholar
16. Tilley, R. J. D., J. Solid State Chem. 21, 293 (1977).CrossRefGoogle Scholar
17. Kawasaki, M., Takahashi, K., Maeda, T., Shinohara, R., Ishiyama, O., Yonezawa, T., Yoshimoto, M., and Koinuma, H., Science 266, 1540 (1994).CrossRefGoogle Scholar
18. Hikita, T., Hanada, T., Kudo, M., and Kawai, M., J. Vac. Sci. Technol. A 11, 2649 (1993).CrossRefGoogle Scholar
19. Brazdeikis, A., Vailionis, A., Flodström, A. S., and Traeholt, C., Physica C 253, 383 (1995).CrossRefGoogle Scholar
20. Matsui, Y., Maeda, H., Tanaka, Y., and Horiuchi, S., Jpn. J. Appl. Phys. 28, L946 (1989).CrossRefGoogle Scholar
21. Head, A. K., Proc. Phys. Soc. (London) B66, 793 (1953).CrossRefGoogle Scholar
22. Dundurs, J. and Sendeckyj, G. P., J. Appl. Phys. 36, 3353 (1965).CrossRefGoogle Scholar
23. Hirth, J. P. and Lothe, J., Theory of Dislocations (McGraw-Hill, New York, 1982), p. 85.Google Scholar
24. Yau, J. K., Munroe, P. R., and Sorell, C. C., Physica C 243, 359 (1995).CrossRefGoogle Scholar
25. Friedel, J., Dislocations (Pergamon Press, Paris, 1964).Google Scholar
26. Ruddlesden, S. N. and Popper, P., Acta Cryst. 11, 54 (1958).CrossRefGoogle Scholar
27. Freitag, B. H., Dissertation, University of Köln (Cologne), 1995.Google Scholar