Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T21:00:53.517Z Has data issue: false hasContentIssue false

High-efficiency photocatalytic performance and mechanism of silver-based metal–organic framework

Published online by Cambridge University Press:  06 February 2019

Xiu-Ju Yin*
Affiliation:
Department of Chemistry, Zhejiang University, Hangzhou 310027, China; and School of Chemistry and Biological Engineering, Hechi University, Yizhou 546300, China
Long-Guan Zhu*
Affiliation:
Department of Chemistry, Zhejiang University, Hangzhou 310027, China
*
a)Address all correspondence to these authors. e-mail: gxyxj505@163.com
Get access

Abstract

Environmental pollution and energy shortages seriously restrict the development of society. Photocatalytic oxidation technology can directly use solar energy to drive a series of chemical reactions. It has the advantages of low energy consumption, mild reaction conditions, and no secondary pollution, and is an effective method to solve organic pollutions in water. The key to achieve this process is to find and design efficient photocatalytic materials. In this paper, a novel silver-based metal–organic framework (Ag-MOF) [{Ag(H2btc)}{Ag2(Hbtc)}]n (1) (H3btc = 1,3,5-trimesic acid) is designed that exhibits a high performance in the photocatalytic degradation of methylene blue (MB). The process of photocatalytic degradation of MB conforms to pseudo first-order kinetics, and the rate is the fastest at pH 3 (K = 0.2654). Meanwhile, the photocatalytic mechanism of 1 is analyzed by in situ electron paramagnetic resonance (EPR) and ESI-MS spectra. The results are helpful for in situ research of the photocatalytic mechanism of MOFs.

Type
Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

An, A.K., Guo, J., Lee, E.J., Jeong, S., Zhao, Y., Wang, Z., and Leiknes, T.: PDMS/PVDF hybrid electrospun membrane with superhydrophobic property and drop impact dynamics for dyeing wastewater treatment using membrane distillation. J. Membr. Sci. 525, 57 (2017).CrossRefGoogle Scholar
Albadarin, A.B., Collins, M.N., Naushad, M., Shirazian, S., Walker, G., and Mangwandi, C.: Activated lignin-chitosan extruded blends for efficient adsorption of methylene blue. Chem. Eng. J. 307, 264 (2017).CrossRefGoogle Scholar
Schwarzenbach, R.P., Escher, B.I., Fenner, K., Hofstetter, T.B., Johnson, C.A., Von Gunten, U., and Wehrli, B.: The challenge of micropollutants in aquatic systems. Science 313, 1072 (2006).CrossRefGoogle ScholarPubMed
Martinez-Huitle, C.A. and Ferro, S.: Electrochemical oxidation of organic pollutants for the wastewater treatment: Direct and indirect processes. Chem. Soc. Rev. 35, 1324 (2006).CrossRefGoogle ScholarPubMed
Glassmeyer, S.T., Furlong, E.T., Kolpin, D.W., Batt, A.L., Benson, R., Boone, J.S., and Mash, H.E.: Nationwide reconnaissance of contaminants of emerging concern in source and treated drinking waters of the United States. Sci. Total Environ. 581, 909 (2017).CrossRefGoogle ScholarPubMed
Zhang, A., Gu, Z., Chen, W., Li, Q., and Jiang, G.: Removal of refractory organic pollutants in reverse-osmosis concentrated leachate by Microwave–Fenton process. Environ. Sci. Pollut. Res. 25, 28907 (2018).CrossRefGoogle ScholarPubMed
Zhang, N., Yang, M.Q., Liu, S., Sun, Y., and Xu, Y.J.: Waltzing with the versatile platform of graphene to synthesize composite photocatalysts. Chem. Rev. 115, 10307 (2015).CrossRefGoogle ScholarPubMed
Lu, K.Q., Xin, X., Zhang, N., Tang, Z.R., and Xu, Y.J.: Photoredox catalysis over graphene aerogel-supported composites. J. Mater. Chem. A 6, 4590 (2018).CrossRefGoogle Scholar
Xie, X., Zhang, N., Tang, Z.R., Anpo, M., and Xu, Y.J.: Ti3C2Tx MXene as a Janus cocatalyst for concurrent promoted photoactivity and inhibited photocorrosion. Appl. Catal., B 237, 43 (2018).CrossRefGoogle Scholar
Robinson, T., McMullan, G., Marchant, R., and Nigam, P.: Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative. Bioresour. Technol. 77, 247 (2001).CrossRefGoogle ScholarPubMed
Stackelberg, P.E., Furlong, E.T., Meyer, M.T., Zaugg, S.D., Henderson, A.K., and Reissman, D.B.: Persistence of pharmaceutical compounds and other organic wastewater contaminants in a conventional drinking-water-treatment plant. Sci. Total Environ. 329, 99 (2004).CrossRefGoogle Scholar
Giebner, S., Ostermann, S., Straskraba, S., Oetken, M., Oehlmann, J., and Wagner, M.: Effectivity of advanced wastewater treatment: Reduction of in vitro endocrine activity and mutagenicity but not of in vivo reproductive toxicity. Environ. Sci. Pollut. Res. 25, 3965 (2018).CrossRefGoogle Scholar
Ahmed, M.B., Zhou, J.L., Ngo, H.H., Guo, W., Thomaidis, N.S., and Xu, J.: Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: A critical review. J. Hazard. Mater. 323, 274 (2017).CrossRefGoogle ScholarPubMed
Yu, L., Han, M., and He, F.: A review of treating oily wastewater. Arabian J. Chem. 10, S1913 (2017).CrossRefGoogle Scholar
Oller, I., Malato, S., and Sánchez-Pérez, J.: Combination of advanced oxidation processes and biological treatments for wastewater decontamination—A review. Sci. Total Environ. 409, 4141 (2011).CrossRefGoogle ScholarPubMed
Bolong, N., Ismail, A.F., Salim, M.R., and Matsuura, T.: A review of the effects of emerging contaminants in wastewater and options for their removal. Desalination 239, 229 (2009).CrossRefGoogle Scholar
Tang, W.Z. and An, H.: UV/TiO2 photocatalytic oxidation of commercial dyes in aqueous solutions. Chemosphere 31, 4157 (1995).CrossRefGoogle Scholar
Mamaghani, A.H., Haghighat, F., and Lee, C.S.: Photocatalytic oxidation technology for indoor environment air purification: The state-of-the-art. Appl. Catal., B 203, 247 (2017).CrossRefGoogle Scholar
Yu, B., Jiang, Q., He, W., Liu, S., Zhou, F., Ji, J., and Chen, H.: Performance study on a novel hybrid solar gradient utilization system for combined photocatalytic oxidation technology and photovoltaic/thermal technology. Appl. Energy 215, 699 (2018).CrossRefGoogle Scholar
Song, Y., Li, J., and Wang, C.: Modification of porphyrin/dipyridine metal complexes on the surface of TiO2 nanotubes with enhanced photocatalytic activity for photoreduction of CO2 into methanol. J. Mater. Res. 33, 2612 (2018).CrossRefGoogle Scholar
Kattel, S., Ramírez, P.J., Chen, J.G., Rodriguez, J.A., and Liu, P.: Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts. Science 355, 1296 (2017).CrossRefGoogle ScholarPubMed
Wang, M., Peng, Z., Li, H., Zhao, Z., and Fu, X.: C fibers@MoO2 nanoparticles core–shell composite: Highly efficient solar-driven photocatalyst. J. Mater. Res. 33, 685 (2018).CrossRefGoogle Scholar
Yan, J.T., Xu, M.Q., Chai, B., Wang, H.B., Wang, C.L., and Ren, Z.D.: In situ construction of BiOBr/Ag3PO4 composites with enhanced visible light photocatalytic performances. J. Mater. Res. 32, 1603 (2017).CrossRefGoogle Scholar
Li, H.W., Zhu, H.K., Wang, M., Min, X., Fang, M.H., Huang, Z.H., Liu, Y.G., and Wu, X.W.: A new Ag/Bi7Ta3O18 plasmonic photocatalyst with a visible-light-driven photocatalytic activity. J. Mater. Res. 32, 3650 (2017).CrossRefGoogle Scholar
Li, X., Xie, J., Jiang, C., Yu, J., and Zhang, P.: Review on design and evaluation of environmental photocatalysts. Front. Environ. Sci. Eng. 12, 14 (2018).CrossRefGoogle Scholar
Ma, Y., Wang, Z., Xu, X., and Wang, J.: Review on porous nanomaterials for adsorption and photocatalytic conversion of CO2. Chin. J. Catal. 38, 1956 (2017).CrossRefGoogle Scholar
Yang, X.L., Wang, Y., Xu, X., Qu, Y., Ding, X., and Chen, H.: Surface plasmon resonance-induced visible-light photocatalytic performance of silver/silver molybdate composites. Chin. J. Catal. 38, 260 (2017).CrossRefGoogle Scholar
Chen, F., Yang, H., Luo, W., Wang, P., and Yu, H.: Selective adsorption of thiocyanate anions on Ag-modified g-C3N4 for enhanced photocatalytic hydrogen evolution. Chin. J. Catal. 38, 1990 (2017).CrossRefGoogle Scholar
Zhao, S.N., Song, X.Z., Song, S.Y., and Zhang, H.J.: Highly efficient heterogeneous catalytic materials derived from metal–organic framework supports/precursors. Coord. Chem. Rev. 337, 80 (2017).CrossRefGoogle Scholar
Zhu, L., Liu, X.Q., Jiang, H.L., and Sun, L.B.: Metal–organic frameworks for heterogeneous basic catalysis. Chem. Rev. 117, 8129 (2017).CrossRefGoogle ScholarPubMed
Ye, J., Gagliardi, L., Cramer, C.J., and Truhlar, D.G.: Computational screening of MOF-supported transition metal catalysts for activity and selectivity in ethylene dimerization. J. Catal. 360, 160 (2018).CrossRefGoogle Scholar
Mueller, U., Schubert, M., Teich, F., Puetter, H., Schierle-Arndt, K., and Pastre, J.: Metal–organic frameworks—Prospective industrial applications. J. Mater. Chem. 16, 626 (2006).CrossRefGoogle Scholar
Huang, J., Zhang, X.B., Song, H.Y., Chen, C.X., Han, F.Q., and Wen, C.C.: Protonated graphitic carbon nitride coated metal–organic frameworks with enhanced visible-light photocatalytic activity for contaminants degradation. Appl. Surf. Sci. 441, 85 (2018).CrossRefGoogle Scholar
Ye, F., Li, H.F., Yu, H.T., Chen, S., and Quan, X.: Hydrothermal fabrication of few-layer MoS2 nanosheets within nanopores on TiO2 derived from MIL-125(Ti) for efficient photocatalytic H2 evolution. Appl. Surf. Sci. 426, 177 (2017).CrossRefGoogle Scholar
Lan, G., Zhu, Y.Y., Veroneau, S.S., Xu, Z., Micheroni, D., and Lin, W.: Electron injection from photoexcited metal–organic framework ligands to Ru2 secondary building units for visible-light-driven hydrogen evolution. J. Am. Chem. Soc. 140, 5326 (2018).CrossRefGoogle ScholarPubMed
Liu, S., Wang, Y., Ma, L., and Zhang, H.: Ni2P/ZnS(CdS) core/shell composites with their photocatalytic performance. J. Mater. Res. 33, 3580 (2018).CrossRefGoogle Scholar
Kung, C.W., Audu, C.O., Peters, A.W., Noh, H., Farha, O.K., and Hupp, J.T.: Copper nanoparticles installed in metal–organic framework thin films are electrocatalytically competent for CO2 reduction. ACS Energy Lett. 2, 2394 (2017).CrossRefGoogle Scholar
Huang, D., Wu, X., Tian, J., Wang, X., Zhou, Z., and Li, D.: Assembling of a novel 3D Ag(I)-MOFs with mixed ligands tactics: Syntheses, crystal structure and catalytic degradation of nitrophenol. Chin. Chem. Lett. 29, 845 (2018).CrossRefGoogle Scholar
Ma, A.Q. and Zhu, L.G.: Diverse silver(I) sulfobenzoate coordination polymers and their recycling property as homogeneous catalyst in oxygenation of sulfide. RSC Adv. 4, 14691 (2014).CrossRefGoogle Scholar
Martín-Betancor, K., Aguado, S., Rodea-Palomares, I., Tamayo-Belda, M., Leganés, F., Rosal, R., and Fernández-Piñas, F.: Co, Zn, and Ag-MOFs evaluation as biocidal materials towards photosynthetic organisms. Sci. Total Environ. 595, 547 (2017).CrossRefGoogle ScholarPubMed
Wyszogrodzka, G., Marszałek, B., Gil, B., and Dorożyński, P.: Metal–organic frameworks: Mechanisms of antibacterial action and potential applications. Drug Discovery Today 21, 1009 (2016).CrossRefGoogle ScholarPubMed
Bredas, J.L., Silbey, R., Boudreaux, D.S., and Chance, R.R.: Chain-length dependence of electronic and electrochemical properties of conjugated systems: Polyacetylene, polyphenylene, polythiophene, and polypyrrole. J. Am. Chem. Soc. 105, 6555 (1983).CrossRefGoogle Scholar
Shinde, Y., Wadhai, S., Ponkshe, A., Kapoor, S., and Thakur, P.: Decoration of Pt on the metal free RGO-TiO2 composite photocatalyst for the enhanced photocatalytic hydrogen evolution and photocatalytic degradation of pharmaceutical pollutant β blocker. Int. J. Hydrogen Energy 43, 4015 (2018).CrossRefGoogle Scholar
Li, X., Shen, R., Ma, S., Chen, X., and Xie, J.: Graphene-based heterojunction photocatalysts. Appl. Surf. Sci. 430, 53 (2018).CrossRefGoogle Scholar
Xing, M., Zhang, J., Qiu, B., Tian, B., Anpo, M., and Che, M.: A Brown mesoporous TiO2−x/MCF composite with an extremely high quantum yield of solar energy photocatalysis for H2 evolution. Small 11, 1920 (2015).CrossRefGoogle Scholar
Tong, Z., Yang, D., Xiao, T., Tian, Y., and Jiang, Z.: Biomimetic fabrication of g-C3N4/TiO2 nanosheets with enhanced photocatalytic activity toward organic pollutant degradation. Chem. Eng. J. 260, 117 (2015).CrossRefGoogle Scholar
Li, S., Wei, C., Hu, Y., Wu, H., and Li, F.: In situ synthesis and photocatalytic mechanism of a cyano bridged Cu(I) polymer. Inorg. Chem. Front. 5, 1282 (2018).CrossRefGoogle Scholar
Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A., and Puschmann, H.: OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 42, 339 (2009).CrossRefGoogle Scholar
Supplementary material: File

Yin and Zhu supplementary material

Figures S1-S7 and Tables SI-II

Download Yin and Zhu supplementary material(File)
File 1.2 MB