Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-28T00:19:06.115Z Has data issue: false hasContentIssue false

Highly efficient H2 evolution over ZnO-ZnS-CdS heterostructures from an aqueous solution containing SO32- and S2- ions

Published online by Cambridge University Press:  31 January 2011

Feng Li
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
Gao Qing Lu*
Affiliation:
ARC Centre of Excellence for Functional Nanomaterials, School of Engineering and Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, QLD 4072, Australia
Hui-Ming Cheng*
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: maxlu@uq.edu.au
b)Address all correspondence to this author. e-mail: cheng@imr.ac.cn
Get access

Abstract

ZnO-ZnS-CdS heterostructure photocatalysts for water splitting were designed and prepared by a wet chemistry method. It was found that ZnO-ZnS-CdS heterostructures are highly active photocatalysts for H2 evolution under simulated solar light irradiation in an aqueous solution containing SO32- and S2- ions as sacrificial reagents. H2 evolution with (ZnO)2-(ZnS)1-(CdS)1 heterostructure reaches up to 2790 μmol h−1 g−1. The photoexcited electrons in the ZnO-ZnS-CdS heterostructures have a much longer lifetime (>225 ns) than that of the sole ZnO, ZnS, and CdS (<65 ns). The favorable interface processes of the heterostructures make a significant contribution to high photocatalytic H2 evolution rate.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Hoffmann, M.R., Martin, S.T., Choi, W.Y., Bahnemann, D.W.Photocatalytic reduction of nitrate ions on TiO2 by oxalic acid. Chem. Rev. 95, 69 (1995)CrossRefGoogle Scholar
2.Fujishima, A., Zhang, X., Tryk, D.A.Heterogeneous photocatalysis: From water photolysis to applications in environmental cleanup. Int. J. Hydrogen Energy 32, 2664 (2007)CrossRefGoogle Scholar
3.Tsuji, I., Kato, H., Kobayashi, H., Kudo, A.Photocatalytic H2 evolution reaction from aqueous solutions over band structure-controlled (AgIn)xZn2(1-x)S2 solid solution photocatalysts with visible-light response and their surface nanostructures. J. Am. Chem. Soc. 126, 13406 (2004)CrossRefGoogle Scholar
4.Maeda, K., Teramura, K., Lu, D.L., Takata, T., Saito, N., Inoue, Y., Domen, K.Photocatalyst releasing hydrogen from water—Enhancing catalytic performance holds promise for hydrogen production by water splitting in sunlight. Nature 440, 295 (2006)CrossRefGoogle Scholar
5.Zong, X., Yan, H.J., Wu, G.P., Ma, G.J., Wen, F.Y., Wang, L., Li, C.Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation. J. Am. Chem. Soc. 130, 7176 (2008)CrossRefGoogle ScholarPubMed
6.Jin, Z.L., Zhang, X.J., Li, Y.X., Li, S.B., Lu, G.X.5.1% apparent quantum efficiency for stable hydrogen generation over eosin-sensitized CuO/TiO2 photocatalyst under visible light irradiation. Catal. Commun. 8, 1267 (2007)CrossRefGoogle Scholar
7.Wang, X.W., Liu, G., Chen, Z.G., Li, F., Lu, G.Q., Cheng, H.M.Efficient and stable photocatalytic H2 evolution from water splitting by (Cd0.8Zn0.2)S nanorods. Electrochem. Commun. 11, 1174 (2009)CrossRefGoogle Scholar
8.Tada, H., Mitsui, T., Kiyonaga, T., Akita, T., Tanaka, K.All-solid-state Z-scheme in CdS-Au-TiO2 three-component nanojunction system. Nat. Mater. 5, 782 (2006)CrossRefGoogle ScholarPubMed
9.Kato, H., Sasaki, Y., Wase, A., Kudo, A.Role of iron ion electron mediator on photocatalytic overall water splitting under visible light irradiation using Z-scheme systems. Bull. Chem. Soc. Jpn. 80, 2457 (2007)CrossRefGoogle Scholar
10.Wang, D.F., Zou, Z.G., Ye, J.H.Photocatalytic water splitting with the Cr-doped Ba2In2O5/In2O3 composite oxide semiconductors. Chem. Mater. 17, 3255 (2005)CrossRefGoogle Scholar
11.Ray, K., Badugu, R., Lakowicz, J.R.Metal-enhanced fluorescence from CdTe nanocrystals: A single-molecule fluorescence study. J. Am. Chem. Soc. 128, 8998 (2006)CrossRefGoogle ScholarPubMed
12.Shevchenko, E.V., Ringler, M., Schwemer, A., Talapin, D.V., Klar, T.A., Rogach, A.L., Feldmann, J., Alivisato, A.P.Self-assembled binary superlattices of CdSe and Au nanocrystals and their fluorescence properties. J. Am. Chem. Soc. 130, 3274 (2008)CrossRefGoogle ScholarPubMed
13.Byrappa, K., Subramani, A.K., Ananda, S., Rai, K.M.L., Dinesh, R., Yoshimura, M.Photocatalytic degradation of rhodamine B dye using hydrothermally synthesized ZnO. Bull. Mater. Sci. 29, 433 (2006)CrossRefGoogle Scholar
14.Reber, J.F., Meier, K.Photochemical production of hydrogen with zinc-sulfide suspensions. J. Phys. Chem. 88, 5903 (1984)CrossRefGoogle Scholar
15.Mau, A.W-H., Huang, C.B., Kakuta, N., Bard, A.J.H2 photoproduction by NaF ion CdS Pt films in H2O S2- solutions. J. Am. Chem. Soc. 106, 6537 (1984)Google Scholar
16.Wang, X.W., Liu, G., Chen, Z.G., Li, F., Wang, L.Z., Lu, G.Q., Cheng, H.M.Enhanced photocatalytic hydrogen evolution by prolonging the lifetime of carriers in ZnO/CdS heterostructures. Chem. Commun. 3452 (2009)CrossRefGoogle ScholarPubMed
17.Kawahara, T., Konishi, Y., Tada, H., Tohge, N., Nishii, J., Ito, S.A patterned TiO2 (anatase)/TiO2 (rutile) bilayer-type photocatalyst: Effect of the anatase/rutile junction on the photocatalytic activity. Angew. Chem. Int. Ed. 41, 2811 (2002)3.0.CO;2-#>CrossRefGoogle Scholar
18.Liu, G., Chen, Z., Dong, C., Zhao, Y., Li, F., Lu, G.Q., Cheng, H.M.Visible light photocatalyst: Iodine-doped mesoporous titania with a bicrystalline framework. J. Phys. Chem. B 110, 20823 (2006)CrossRefGoogle ScholarPubMed
19.Xu, Y., Schoonen, M.A.A.The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am. Mineral. 85, 543 (2000)CrossRefGoogle Scholar
20.Abe, R., Sayama, K., Sugihara, H.Development of new photocatalytic water splitting into H2 and O2 using two different semiconductor photocatalysts and a shuttle redox mediator IO3-/I-. J. Phys. Chem. B 109, 16052 (2005)CrossRefGoogle Scholar