Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-02T19:21:13.086Z Has data issue: false hasContentIssue false

High-resolution electron microscopy of dislocations of MgO

Published online by Cambridge University Press:  03 March 2011

J. Ohta
Affiliation:
Institute of Industrial Science, Univers ity of Tokyo, Roppongi, Minato-ku, Tokyo 106, Japan
K. Suzuki
Affiliation:
Institute for Solid State Physics, University of Tokyo, Roppongi, Minato-ku, Tokyo 106, Japan
T. Suzuki
Affiliation:
Institute of Industrial Science, University of Tokyo, Roppongi, Minato-ku, Tokyo 106, Japan
Get access

Abstract

Dislocations in MgO introduced by ion irradiation and by plastic deformation are observed by HREM. Depending on the Burgers vector and the dislocation character, various types of lattice images are obtained. Image simulations are performed for the inclination of dislocations, as well as for dissociated dislocations. A comparison of observed and simulated images shows that inclination of nondissociated dislocations makes them appear as if they were dissociated; in reality a/2(110) dislocations in MgO are not dissociated.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Fontaine, G., J. Phys. Chem. Solids 29, 209 (1968).CrossRefGoogle Scholar
2Fontaine, G. and Haasen, P., Phys. Status Solidi 31, K67 (1969).CrossRefGoogle Scholar
3Tasker, P. W. and Bullough, T. J., Philos. Mag. A 43, 313 (1981).CrossRefGoogle Scholar
4Huntington, H. B., Dickey, J. E., and Thomson, R., Phys. Rev. 100, 1117 (1955).CrossRefGoogle Scholar
5Kurosawa, T., J. Phys. Soc. Jpn. 19, 2096 (1964).CrossRefGoogle Scholar
6Hoagland, R. G., Hirth, J. P., and Gehlen, P. C., Philos. Mag. 34, 413 (1976).CrossRefGoogle Scholar
7Puls, M. P. and Norgett, M. J., J. Appl. Phys. 47, 466 (1976).CrossRefGoogle Scholar
8Woo, C. H. and Puls, M. P., J. Phys. C. 9, 127 (1976).CrossRefGoogle Scholar
9Woo, C. H. and Puls, M. P., Philos. Mag. 35, 727 (1977).CrossRefGoogle Scholar
10Woo, C. H. and Puls, M. P., Philos. Mag. 35, 1641 (1977).CrossRefGoogle Scholar
11Puls, M. P. and So, C. B., Phys. Status Solidi B 98, 87 (1980).CrossRefGoogle Scholar
12Anstis, G. R. and Hutchison, J. L., in Dislocations in Solids, edited by Nabarro, F.R.N. (North-Holland, Amsterdam, 1992), Vol. 9,Google Scholar
13Takeuehi, S., Suzuki, K., Ichihara, M., and Suzuki, T., in Lattice Defects in Ceramics, edited by Suzuki, T. and Takeuehi, S. (Pub. Office, Jpn. J. Appl. Phys., Tokyo, 1990), p. 17.Google Scholar
14Foitzik, A., Haasen, P., and Skrotzki, W., Philos. Mag. A 64, 29 (1991).CrossRefGoogle Scholar
15Suzuki, T. and Koizumi, H., Intern. Symposium on Lattice Defect Related Properties of Dielectric Materials (Institute for Low Temperature and Structure Research, Wroclaw, 1986), p. 117.Google Scholar
16Domínguez-Rodríguez, A., Castaing, J., Koizumi, H., and Suzuki, T., Rev. Appl. Phys. 23, 1361 (1988).CrossRefGoogle Scholar
17Jiménez-Melendo, M., Rivière, J.P., Suzuki, T., Koizumi, H., Castaing, J., and Domínguez-Rodríguez, A., J. Mater. Sci. 27, 3589 (1992).CrossRefGoogle Scholar
18Ziegler, K. F., Biersack, J. P., and Littmark, U., The Stopping and Range of Ions in Solids (Pergamon Press, New York, 1985), pp. 109, 140.Google Scholar
19Bowen, D. H. and Clarke, F. J. P., Philos. Mag. 9, 413 (1964).Google Scholar
20Youngman, R. A., Hobbs, L. W., and Mitchell, T. E., J. Phys. (Paris) 41, C6227 (1980).CrossRefGoogle Scholar
21Goodman, P. and Moodie, A. F., Acta Crystallogr. Sec. A 30, 280 (1974).CrossRefGoogle Scholar
22Hirth, J. P. and Lothe, J., Theory of Dislocations (John Wiley ' Sons, New York, 1982), pp. 59, 95.Google Scholar
23Fontaine, G., J. Phys. Chem. Solids 28, 2553 (1967).CrossRefGoogle Scholar