Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-28T16:27:19.683Z Has data issue: false hasContentIssue false

A high-resolution NMR and synchrotron x-ray powder diffraction study of zeolite ZSM-11

Published online by Cambridge University Press:  31 January 2011

B. H. Toby
Affiliation:
Union Carbide Corporation, Tarrytown, New York 10591
M. M. Eddy
Affiliation:
University of California at Santa Barbara, Santa Barbara, California 93106
C. A. Fyfe
Affiliation:
Guelph Waterloo Center for Graduate work in Chemistry, Guelph Campus, Department of Chemistry and Biochemistry, University of Guelph, Guelph, Ontario N1G 2W1, Canada
G. T. Kokotailo
Affiliation:
Guelph Waterloo Center for Graduate work in Chemistry, Guelph Campus, Department of Chemistry and Biochemistry, University of Guelph, Guelph, Ontario N1G 2W1, Canada
H. Strobl
Affiliation:
Guelph Waterloo Center for Graduate work in Chemistry, Guelph Campus, Department of Chemistry and Biochemistry, University of Guelph, Guelph, Ontario N1G 2W1, Canada
D. E. Cox
Affiliation:
Brookhaven National Laboratory, Upton, New York 11973
Get access

Abstract

High-resolution nuclear magnetic resonance (NMR) spectra and synchrotron x-ray powder diffraction data have been obtained from a well-crystallized highly dealuminated sample of the zeolite ZSM-11. The Rietveld profile technique has been applied to the synchrotron data to give the first detailed refinement of the idealized structure derived ten years ago by distance least-squares modeling methods [G. T. Kokotailo, P. Chu, S. L. Lawton, and W. M. Meier, Nature 275, 119 (1978)], which involves 54 variable atomic positional parameters. The structure is tetragonal (a = 20.065 Å, c = 13.408 Å at 25 °C) and consistent with the previously reported tetragonal space group I \overline 4 m2, but the NMR spectra indicate local deviations from this symmetry that disappear at 100 °C.

Type
Articles
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Fyfe, C. A., Gobbi, G. C., Kennedy, G. J., DeSchutter, C. T., Murphy, W. J., Ozubko, R. S., and Slack, D. A., Chem. Lett. 1984, 163.Google Scholar
2Newsam, J. A., Science 231, 1093 (1986).CrossRefGoogle Scholar
3Wright, P. A., Thomas, J. M., Cheetham, A. K., and Nowak, A. K., Nature 318, 611 (1985).CrossRefGoogle Scholar
4Bennett, J. M., Blackwell, C. S., and Cox, D. E., J. Phys. Chem. 87, 3783 (1983).CrossRefGoogle Scholar
5Parise, J. B., Abrams, L., Gier, T. E., Corbin, D. R., Jorgensen, J. D., and Prince, E.. J. Phys. Chem. 88, 2303 (1984).CrossRefGoogle Scholar
6Rietveld, H. M., J. Appl. Cryst. 2, 65 (1969).CrossRefGoogle Scholar
7Baerlocher, C., in the Proceedings of the 6th International Zeolite Conference, Reno, 1984, p. 823.Google Scholar
8David, W. I. F., Harrison, W. T. A., and Johnson, M. W., High Resolution Powder Diffraction, Materials Science Forum, edited by Catlow, C. R. A. (Trans Tech, Aedermannsdorf, Switzerland, 1986), Vol. 9, p. 89.Google Scholar
9Hewat, A. W., in Ref. 8, p. 69.Google Scholar
10Cox, D. E., Hastings, J. B., Cardoso, L. P., and Finger, L. W., in Ref. 8, p. 1; D. E. Cox, Mater. Res. Soc. Bull. 12, 16 (1987).Google Scholar
11Cheetham, A. K., Nature 325, 109 (1987).CrossRefGoogle Scholar
12Cheetham, A. K., David, W. I. F., Eddy, M. M., Jakeman, R. J. B., Johnson, M. W., and Torardi, C. C., Nature 320, 46 (1986).CrossRefGoogle Scholar
13Attfield, J. P., Sleight, A. W., and Cheetham, A. K., Nature 322, 620 (1986).CrossRefGoogle Scholar
14Chu, P., United States Patent No. 3, 709, 979 (1973).Google Scholar
15Kokotailo, G. T., Chu, P., Lawton, S. L., and Meier, W. M., Nature 275, 119 (1978).CrossRefGoogle Scholar
16Kokatailo, G. T. and Meier, W. M., Chem. Soc. Special Pub. 33, 133 (1980).Google Scholar
17Kokotailo, G. T., Lawton, S. L., Olson, D. H., and Meier, W. M., Nature 272, 437 (1978).CrossRefGoogle Scholar
18Meier, W. M. and Villiger, H., Z. Kristallogr. 129, 411 (1969).CrossRefGoogle Scholar
19Perego, G., Cesari, M., and Allegra, G., J. Appl. Crystallogr. 17, 403 (1984).CrossRefGoogle Scholar
20Millward, G. R., Ramdas, S., Thomas, J. M., and Barlow, M. T., J. Chem. Soc. Faraday Trans. 79, 1075 (1983).CrossRefGoogle Scholar
21Fyfe, C. A., Thomas, J. M., and Klinowski, J., Angew. Chem. 22, 259 (1983).CrossRefGoogle Scholar
22Fyfe, C. A., Kokotailo, G. T., Kennedy, G. J., and DeSchutter, C., J. Chem. Soc. Commun. 1985, 306.CrossRefGoogle Scholar
23Fyfe, C. A., Gobbi, G. C., Ozubko, R. S., Murphy, W. J., and Slack, D. A., J. Am. Chem. Soc. 106, 4435 (1984).CrossRefGoogle Scholar
24Fyfe, C. A., Gobbi, G. C., Kennedy, G. J., Graham, J. D., Ozubko, R. S., Murphy, W. J., Bothner-By, A., Dadock, J., and Chesnick, A. S., Zeolites 5, 179 (1985).CrossRefGoogle Scholar
25Fyfe, C. A., Gobbi, G. C., Hartman, J. S., Lenkinski, R. F., O'Brien, J. H., Beange, E. R., and Smith, M. A. R., J. Mag. Res. 47, 168 (1982).Google Scholar
26Wind, R. (privatecommunication).Google Scholar
27Frye, J. S. and Maciel, G. E., J. Mag. Res. 48, 125 (1982).Google Scholar
28Wertheim, G. K., Butler, M. A., West, K. W., and Buchanan, D. N. E., Rev. Sci. Instrum. 45, 1369 (1974).CrossRefGoogle Scholar
29Young, R. A. and Wiles, D. B.. J. Appl. Crystallogr. 15, 430 (1982).CrossRefGoogle Scholar
30Wilson, A. J. C., Mathematical Theory of X-ray Powder Diffractometry (Philips, Eindhoven, 1963).Google Scholar
31Smith, G. S. and Snyder, R. L., J. Appl. Crystallogr. 12, 60 (1979).CrossRefGoogle Scholar
32Hewat, A. W., Atomic Energy Research Establishment, Harwell, Report No. R735O, 1973.Google Scholar
33Ahtee, M., Ononius, L., Nurmela, M., and Suortti, P., J. Appl. Crystallogr. 17, 352 (1984).CrossRefGoogle Scholar
34Cox, D. E., Acta Crystallogr. A 40, Suppl. C369 (1984).CrossRefGoogle Scholar
35Young, R. A., Prince, E., and Sparks, R. A., J. Appl. Crystallogr. 15, 357 (1982).CrossRefGoogle Scholar