Published online by Cambridge University Press: 31 January 2011
The high-strain-rate mechanical properties, deformation mechanisms, and fracture characteristics of a bulk metallic glass (BMG)-matrix composite, consisting of an amorphous Zr57Nb5Cu15.4Ni12.6Al10 (LM106) matrix with crystalline tungsten reinforcement particles, were investigated using gas gun anvil-on-rod impact experiments instrumented with velocity interferometry (VISAR) and high-speed digital photography. The time-resolved elastic-plastic wave propagation response obtained through VISAR and the transient deformation states captured with the camera provided information about dynamic strength and deformation modes of the composite. Comparison of experimental measurements with AUTODYN-simulated transient deformation profiles and free surface velocity traces allowed for validation of the pressure-hardening Drucker–Prager model, which was used to describe the deformation response of the composite. The impacted specimens recovered for post-impact microstructural analysis provided further information about the mechanisms of dynamic deformation and fracture characteristics. The overall results from experiments and modeling revealed a strain to failure of ∼45% along the length and ∼7% in area, and the fracture initiation stress was found to decrease with increasing impact velocity because of the negative strain-rate sensitivity of the BMG.