Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-30T21:28:25.773Z Has data issue: false hasContentIssue false

High-temperature deformation and fracture of Bi–Sr–Ca–Cu–O superconductors

Published online by Cambridge University Press:  03 March 2011

K.C. Goretta
Affiliation:
Energy Technology Division, Argonne National Laboratory, Argonne, Illinois 60439-4838
E.J. Zamirowski
Affiliation:
Energy Technology Division, Argonne National Laboratory, Argonne, Illinois 60439-4838
J.M. Calderoñ-Moreno
Affiliation:
Departamento de Física de la Materia Condensada, Universidad de Sevilla, 41080 Sevilla, Spain
D.J. Miller
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439-4838
Nan Chen
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439-4838
T.G. Holesinger
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439-4838
J.L. Routbort
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439-4838
Get access

Abstract

Dense polycrystalline Bi2Sr2Cu2Ox (2201), Bi2Sr2CaCu2Ox (2212), and (Bi, Pb)2Sr2Ca2Cu3Ox (2223) specimens were compressed in air at 730–835 °C. All of the materials exhibited an apparent steady-state creep response. Strain rate was proportional to stress to the 3.1–3.8 power. Apparent activation energies for the deformation processes were 520 ± 50 kJ/mole for the 2201, 630 ± 210 kJ/mole for the 2212, and 960 ± 210 kJ/mole for the 2223. Transmission electron microscopy revealed substantial generation and propagation of basal-plane dislocations during deformation. Few nonbasal-plane dislocations were observed. Intergranular fracture was evident in all deformed samples, and intragianular fracture was evident along the basal planes of some grains. It is suggested that the kinetics of fracture were determined by dislocation motion within the grains.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Murayama, N. and Torii, Y., Jpn. J. Appl. Phys. 28, L1763 (1989).CrossRefGoogle Scholar
2Whitlow, G. A., Lovic, W. R., and Bowker, J. C., Supercond. Sci. Technol. 4, 353 (1991).CrossRefGoogle Scholar
3Tampieri, A. and Babini, G. N., Jpn. J. Appl. Phys. 30, LI 163 (1991).Google Scholar
4Demchuk, K. M., Pokazan'eva, G. K., Lebedev, S. A., Cheshnitskii, S. M., Martem'yanov, A. N., Kamenetskii, B. I., Levit, V. I., Davydova, L. S., Tsypin, M. I., and Kir'yanova, L. T., Superconductivity 4, 1883 (1991).Google Scholar
5Moon, B. M., Korenivski, V. N., Rao, K. V., and Kim, Y. J., Mater. Lett. 14, 72 (1992).CrossRefGoogle Scholar
6Wu, X. and Chen, I-W., J. Am. Ceram. Soc. 75, 1846 (1992).CrossRefGoogle Scholar
7Goretta, K. C., Miller, D. J., Poeppel, R. B., and Nash, A. S., in Pressure Effects on Materials Processing and Design, edited by Ishizaki, K., Hodge, E., and Concannon, M. (Mater. Res. Soc. Symp. Proc. 251, Pittsburgh, PA, 1992), p. 325.Google Scholar
8Dou, S. X., Liu, H. K., Wang, J., and Bian, W. M., Supercond. Sci. Technol. 4, 21 (1991).CrossRefGoogle Scholar
9Liu, H. K., Guo, Y. C., and Dou, S. X., Supercond. Sci. Technol. 5, 591 (1992).CrossRefGoogle Scholar
10Miller, D. J., Sengupta, S., Shi, D., Hettinger, J. D., Gray, K. E., Nash, A. S., and Goretta, K. C., Appl. Phys. Lett. 61, 2823 (1992).CrossRefGoogle Scholar
11P.E. Reyes-Morel, Wu, X., and Chen, I-W., in Ceramic Superconductors II, edited by Yan, M. F. (The American Ceramics Society, Westerville, OH, 1988), p. 590.Google Scholar
12Kuznetsov, V. N., Shalaev, V. I., Sagaradze, V. V., Dus'e, E. V., Arbuzov, V. L., Davletshin, A. E., Paskrebysheva, V. R., and Cheshnitskii, S. M., Superconductivity 5, 1850 (1992).Google Scholar
13Routbort, J. L., Goretta, K. C., Miller, D. J., Kazelas, D. B., Clauss, C., and Domínguez-Rodríguez, A., J. Mater. Res. 7, 2360 (1992).CrossRefGoogle Scholar
14Wang, H., Wang, X., Shang, S., Wang, Z., Lu, Z., and Jiang, M., Appl. Phys. Lett. 57, 710 (1990).CrossRefGoogle Scholar
15Cheetham, A. K., Chippendale, A. M., and Hibble, S. J., Nature 333, 21 (1988).CrossRefGoogle Scholar
16Koyama, S., Endo, U., and Kawai, T., Jpn. J. Appl. Phys. 27, L1861 (1988).CrossRefGoogle Scholar
17Hong, B., Hahn, J., and Mason, T. O., J. Am. Ceram. Soc. 73, 1965 (1990).CrossRefGoogle Scholar
18Hong, B. and Mason, T. O., J. Am. Ceram. Soc. 74, 1045 (1991).CrossRefGoogle Scholar
19Hiroi, Z., Ikeda, Y., Takano, M., and Bando, Y., J. Mater. Res. 6, 435 (1991).CrossRefGoogle Scholar
20Holesinger, T. G., Miller, D. J., Chumbley, L. S., Kramer, M. J., and Dennis, K. W., Physica C 202, 109 (1992).CrossRefGoogle Scholar
21Kaufman, D. Y., Lanagan, M. T., Dorris, S. E., Dawley, J. T., Bloom, I. D., Hash, M. C., Chen, N., DeGuire, M. R., and Poeppel, R. B., Appl. Supercond. 1, 81 (1993).CrossRefGoogle Scholar
22Chu, C-Y., Routbort, J. L., Chen, N., Biondo, A. C., Kupperman, D. S., and Goretta, K. C., Supercond. Sci. Technol. 5, 306 (1992).CrossRefGoogle Scholar
23Holesinger, T. G., Miller, D. J., Viswanathan, H. K., and Chumbley, L. S., J. Mater. Res. 8, 2149 (1993).CrossRefGoogle Scholar
24Holesinger, T. G., Miller, D. J., Fleshier, S., and Chumbley, L. S., J. Mater. Res. 7, 2035 (1992).CrossRefGoogle Scholar
25Matsuzaki, K., Inoue, A., and Masumoto, T., Jpn. J. Appl. Phys. 29, L1789 (1990).CrossRefGoogle Scholar
26Chen, N., Argonne National Laboratory, unpublished results (1993).Google Scholar
27Goretta, K. C., Routbort, J. L., Biondo, A. C., Gao, Y., de Arellano-López, A. R., and Domínguez-Rodríguez, A., J. Mater. Res. 5, 2766 (1990).CrossRefGoogle Scholar
28Chen, N., Rothman, S. J., Routbort, J. L., and Goretta, K. C., J. Mater. Res. 7, 2308 (1992).CrossRefGoogle Scholar
29Cannon, W. R. and Langdon, T. G., J. Mater. Sci. 18, 1 (1983).CrossRefGoogle Scholar
30Morgan, P. E. D., Okada, M., Matsumoto, T., and Soeta, A., in Advances in Superconductivity II, edited by Ishiguro, T. and Kajimura, K. (Springer-Verlag, Tokyo, 1990), p. 435.CrossRefGoogle Scholar
31Dou, S. X., Song, K. H., Liu, H. K., Sorrell, C. C., Apperley, M. H., Gouch, A. J., Savvides, N., and Hensley, D. W., Physica C 160, 533 (1989).CrossRefGoogle Scholar
32Nash, A. S., Nash, P., Poeppel, R. B., and Goretta, K. C., in High Temperature Superconducting Compounds III, edited by Whang, S. H., DasGupta, A., and Collings, E. W. (The Minerals, Metals, and Materials Society, Warrendale, PA, 1991), p. 77.Google Scholar
33Gao, Y., Wu, C-T., Shi, Y., Merkle, K. L., and Goretta, K. C., Appl. Supercond. 1, 131 (1993).CrossRefGoogle Scholar
34Li, Z-Q., Shen, H., Qin, Y., Jiang, J-Y., and Du, J-J., Philos. Mag. Lett. 60, 123 (1989).CrossRefGoogle Scholar
35Song, C., Liu, F., Gu, H., Lin, T., Zhang, J., Xiong, G., and Yin, D., J. Mater. Sci. 26, 11 (1991).CrossRefGoogle Scholar
36Shang, P., Yang, G., Jones, I. P., Gough, C. E., and Abell, J. S., Appl. Phys. Lett. 63, 827 (1993).CrossRefGoogle Scholar
37Murase, T., Kuroda, K., Suzuki, K., and Saka, H., Philos. Mag. A 62, 583 (1990).CrossRefGoogle Scholar
38Takahashi, Y. and Suga, T., Jpn. J. Appl. Phys. 29, L2006 (1990).CrossRefGoogle Scholar
39A. de Arellano-López, Goretta, K. C., Routbort, J. L., Miller, D. J., and Domínguez-Rodríguez, A., Ceram. Acta 3, 5 (1991).Google Scholar
40Routbort, J. L., Miller, D. J., Zamirowski, E. J., and Goretta, K. C., Supercond. Sci. Technol. 6, 337 (1993).CrossRefGoogle Scholar