Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-14T19:25:21.012Z Has data issue: false hasContentIssue false

High-temperature deformation of mullite and analysis of creep curves

Published online by Cambridge University Press:  31 January 2011

H. Rhanim
Affiliation:
Unité de Formation et de Recherche (UFR) Matériaux et Énergies Renouvelables, Université Chouaib Doukkali, Faculté des Sciences, BP 20 El Jadida, Morocco
C. Olagnon
Affiliation:
Groupe d'Etudes de Métallurgie Physique et Physique des Matériaux (GEMPPM), URA CNRS 341, Bat. 502, INSA de Lyon, 69621 Villeurbanne, France
G. Fantozzi
Affiliation:
Groupe d'Etudes de Métallurgie Physique et Physique des Matériaux (GEMPPM), URA CNRS 341, Bat. 502, INSA de Lyon, 69621 Villeurbanne, France
A. Azim
Affiliation:
Unité de Formation et de Recherche (UFR) Matériaux et Énergies Renouvelables, Université Chouaib Doukkali, Faculté des Sciences, BP 20 El Jadida, Morocco
Get access

Abstract

The creep behavior of mullite was studied under different stresses and in the temperature range 1200–1450 °C, and an analysis of creep curves was proposed. The study of creep behavior of mullite at high temperatures clearly indicates that this material exhibits concurrent creep and slow crack growth. An effective transition stress exists at each temperature. The analysis takes account of the total creep curve; in particular, the primary and stationary stages. It is now possible to determine by extrapolation the steady-state creep rate for specimens that break in the transient domain during tests. Thus, one can verify the influence of the stress on the steady-state creep rate over a wide stress range. On the other hand, this analysis clearly indicates the existence of two values of the activation energy around 1300 °C; this suggests a change of creep mechanism at this temperature.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ohnishi, H., Kawanami, T., Miyazaki, K., and Hiraiwa, T., Mechanical Properties of Mullite (Lûbeck, Germany, 1986), pp. 633641.Google Scholar
Mizuno, M., J. Am. Ceram. Soc. 74(12), 3017 (1991).CrossRefGoogle Scholar
Torrecillas, R., Ph.D. Thesis, INSA, Lyon, France (1994) (in French).Google Scholar
Rhanim, H., Ph.D. Thesis, UCD, EL Jadida, Morocco (1996) (in French).Google Scholar
Hollenberg, G.W., Terwilliger, G.R., and Gordon, R.S., J. Am. Ceram. Soc. 54(4), 196 (1991).CrossRefGoogle Scholar
Terence, G., Ceramurgia Int. 6(1), 11 (1980).Google Scholar
Cadek, J., Creep in Metallic Materials (Elsevier, Amsterdam, The Netherlands, 1988).Google Scholar
Raj, R. and Ashby, M.F., Metall. Trans. 2(4), 1113 (1971).CrossRefGoogle Scholar
Evans, A.G. and Rana, A.. Acta Metall. 28, 129 (1980).CrossRefGoogle Scholar
Evans, R.W., Parker, J.D., and Wilshire, B., in Recent Advances in Creep and Fracture of Engineering Materials and Structure, edited by Wilshire, B. and Owen, D.R.J. (Pineridge Press, Swansea, U.K. 1982), p. 135.Google Scholar
Evans, R.W. and Wilshire, B., in Creep of Metals and Alloys (The Institute of Metals, London, U.K., 1985), p. 197.Google Scholar
Ding, J.L., Liu, K.C., More, K.L., and Brinkman, C.R., J. Am. Ceram. Soc. 77(4), 867 (1994).CrossRefGoogle Scholar
Rhanim, H., Olagnon, C., Fantozzi, G., and Torrecillas, R., Ceram. Int. 23(6), 497 (1997).CrossRefGoogle Scholar
Dobes, F. and Cadek, J., Met. Mater. 19, 31 (1981).Google Scholar