Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-28T14:35:17.593Z Has data issue: false hasContentIssue false

A high-temperature displacement-sensitive indenter for studying mechanical properties of thermal barrier coatings

Published online by Cambridge University Press:  03 March 2011

Chang-Hoon Kim
Affiliation:
Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106
Arthur H. Heuer
Affiliation:
Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106
Get access

Abstract

Electron beam physical-vapor-deposited Y2O3-stabilized ZrO2 thermal barrier coating (TBC) samples were indented from room temperature to 900 °C using an instrumented high-temperature vacuum displacement-sensitive indenter. Hardness and elastic modulus were determined from the load–displacement curves recorded during indentation. Both the hardness and the elastic modulus of the TBCs were much lower than those of dense ceramics of a similar composition; this is attributed to the increased compliance that results from the porous columnar microstructure of the TBCs. In addition, the TBCs showed an unusual absence of elastic recovery at the residual indents compared to the dense ceramics.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Oliver, W.C. and Pharr, G.M., J. Mater. Res. 7 1564 (1992).CrossRefGoogle Scholar
2.Doerner, M.F. and Nix, W.D., J. Mater. Res. 1 601 (1986).CrossRefGoogle Scholar
3.Pharr, G.M. and Cook, R.F., J. Mater. Res. 5 847 (1990).CrossRefGoogle Scholar
4.Wolf, B., Cryst. Res. Technol. 35 377 (2000).3.0.CO;2-Q>CrossRefGoogle Scholar
5.Ricote, J., Pardo, L. and Jiménez, B., J. Mater. Sci. 29 3248 (1994).CrossRefGoogle Scholar
6.Harris, L.B. and Nyang, F.K., J. Mater. Sci. Lett. 7 801 (1988).CrossRefGoogle Scholar
7.Padture, N.P., Gell, M. and Jordan, E.H., Science 296 280 (2002).CrossRefGoogle Scholar
8.Strangman, T.E., Thin Solid Films 127 93 (1985).CrossRefGoogle Scholar
9.Twigg, P.C. and Page, T.F., Thin Solid Films 236 219 (1993).CrossRefGoogle Scholar
10.Kernan, B.D., He, A. and Heuer, A.H., J. Am. Ceram. Soc. 86 959 (2003).Google Scholar
11.Johnson, C.A., Ruud, J.A., Bruce, R. and Wortman, D., Surf. Coat. Technol. 108–109 80 (1998).CrossRefGoogle Scholar
12.Singh, J.P., Sutaris, M. and Ferber, M., Ceram. Eng. Sci. Proc. 18 191 (1997).CrossRefGoogle Scholar
13.Eldridge, J.I., Zhu, D. and Miller, R.A., J. Am. Ceram. Soc. 84 2737 (2001).CrossRefGoogle Scholar
14.Kim, C.H., Kernan, B.D. and Heuer, A.H.Ceram. Trans. 156, (2004, in press).Google Scholar
15.Morscher, G.N., Pirouz, P. and Heuer, A.H., J. Am. Ceram. Soc. 74 491 (1991).CrossRefGoogle Scholar
16.Alcala, J., J. Am. Ceram. Soc. 83 1977 (2000).CrossRefGoogle Scholar
17.Kernan, B.D., Ph.D. Thesis, Case Western Reserve University, Cleveland, OH (2001).Google Scholar
18.Zhu, D. and Miller, R.A., Mater. Res. Soc. Bull. 25 43 (2000).CrossRefGoogle Scholar
19.Mayo, M.J., Siegel, R.W., Narayanasamy, A. and Nix, W.D., J. Mater. Res. 5 1073 (1990).CrossRefGoogle Scholar
20.Chudoba, T. and Richter, F., Surf. Coat. Technol. 148 191 (2001).CrossRefGoogle Scholar
21.Gubicza, J., Juhász, A. and Lendvai, J., J. Mater. Res. 11 2964 (1996).CrossRefGoogle Scholar
22.McColm, I.J.Ceramic Hardness (Plenum Press, New York, 1990), Chapter 2.CrossRefGoogle Scholar
23.Luo, J. and Stevens, R., Ceram. Int. 25 281 (1999).CrossRefGoogle Scholar
24.Lawn, B.R. and Howes, V.R., J. Mater. Sci. 16 2745 (1981).CrossRefGoogle Scholar