Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-02T17:33:32.677Z Has data issue: false hasContentIssue false

High-temperature Hf-site-interchange chemistry in LiNbO3 and LiTaO3

Published online by Cambridge University Press:  31 January 2011

Dunbar P. Birnie III
Affiliation:
Department of Materials Science and Engineering, University of Arizona, Tucson, Arizona 85721
Gary L. Catchen
Affiliation:
Department of Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802
Get access

Abstract

We explain observed Hf-site interchange in LiNbO3 and LiTaO3 at high temperatures using solid-state defect chemistry reactions. The model takes into account fully the effects of nonstoichiometry on the ferroelectric-to-paraelectric phase transition. Specifically, we use this model to interpret the temperature dependence of the Hf-site interchange that we measured using perturbed-angular-correlation (PAC) spectroscopy. In this context, the site interchange is an equilibrium, thermodynamic process that involves the partitioning of Hf ions between Li and group-V (Nb and Ta) sites. The Hf ions replace group-V ions by pushing them from their normal sites to the Li sublattice. Based on the temperature dependence of the site occupancy, this reaction requires approximately 2.2 to 2.3 eV.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Abouelleil, M. M. and Leonberger, F. J., J. Am. Ceram. Soc. 72, 13111321 (1989).CrossRefGoogle Scholar
2Tsai, C.S., Jpn. J. Appl. Phys. 19 (Suppl. 1), 661665 (1980).CrossRefGoogle Scholar
3Milewski, A. and Samula, J., Ferroelectrics 93, 271278 (1989).CrossRefGoogle Scholar
4Shah, R.R., Kim, D.M., Rabson, T.A., and Tittel, F.K., J. Appl. Phys. 47, 54215431 (1976).CrossRefGoogle Scholar
5Fukuma, M. and Noda, J., Appl. Opt. 19 (4), 591597 (1980).CrossRefGoogle Scholar
6Eknoyan, O., Greenblatt, A. S., Burns, W. K., and Bulmer, C. H., Appl. Opt. 25 (5), 737739 (1986).CrossRefGoogle Scholar
7Burns, W.K., Klein, P.H., West, E.I., and Plew, L.E., J. Appl. Phys. 50 (10), 61756182 (1979).CrossRefGoogle Scholar
8Staebler, D.L. and Phillips, W., Appl. Opt. 13, 788794 (1974).CrossRefGoogle Scholar
9For a review of earlier PAC measurements on ferroelectrics, see Catchen, G. L., Wukitch, S. J., Saylor, E. M., Huebner, W., and Blaszkiewicz, M., Ferroelectrics 117, 175195 (1991).CrossRefGoogle Scholar
10Catchen, G. L., Wukitch, S. J., Spaar, D., and Blaszkiewicz, M., Phys. Rev. B 42, 18851894 (1990).CrossRefGoogle Scholar
11Catchen, G. L., Williams, I. D., Spaar, D.M., Wukitch, S. J., and Adams, J. M., Phys. Rev. B 43, 11381141 (1991).CrossRefGoogle Scholar
12Catchen, G. L., Rasera, R. L., Randall, C. A., Smith, D. K., and Kurtz, S. K., Phys. Rev. B 45, 50155018 (1992).CrossRefGoogle Scholar
13Catchen, G.L. and Spaar, D.M., Phys. Rev. B 44, 1213712145 (1991).CrossRefGoogle Scholar
14Catchen, G. L., Adams, J. M., and Rearick, T. M., Phys. Rev. B 46, 27432749 (1992).CrossRefGoogle Scholar
15Miyazawa, S., J. Appl. Phys. 50, 45994603 (1979).CrossRefGoogle Scholar
16Thaniyavarn, S., Findakly, T., Booher, D., and Moen, J., in Fiber Optics: Short-Haul and Long-Haul Measurements and Applications, II, SP1E Proc. 559, 124128 (1985).CrossRefGoogle Scholar
17Kroger, F. A., The Chemistry of Imperfect Crystals (North-Holland, Amsterdam, 1964).CrossRefGoogle Scholar
18Gallagher, P. K. and O'Bryan, H. M., J. Am. Ceram. Soc. 71, C56–C59 (1988).Google Scholar
19Abrahams, S. C., Reddy, J. M., and Bernstein, J. L., J. Phys. Chem. Solids 27, 9971012 (1966).CrossRefGoogle Scholar
20Abrahams, S. C., Hamilton, W. C., and Reddy, J. M., J. Phys. Chem. Solids 27, 10131018 (1966).CrossRefGoogle Scholar
21Abrahams, S. C., Levinstein, H. J., and Reddy, J. M., J. Phys. Chem. Solids 27, 10191026 (1966).CrossRefGoogle Scholar
22Abrahams, S. C. and Bernstein, J. L., J. Phys. Chem. Solids 28, 16851692 (1967).CrossRefGoogle Scholar
23Abrahams, S. C., Hamilton, W. C., and Siqueria, A., J. Phys. Chem. Solids 28, 16931698 (1967).CrossRefGoogle Scholar
24Abrahams, S. C., Buehler, E., Hamilton, W. C., and Laplaca, S. J., J. Phys. Chem. Solids 34, 521532 (1973).CrossRefGoogle Scholar
25Lerner, P., Legras, C., and Dugas, J. P., J. Cryst. Growth 3, 231235 (1968).CrossRefGoogle Scholar
26Peterson, G. E. and Carruthers, J. R., J. Solid State Chem. 1, 9899 (1969).CrossRefGoogle Scholar
27Peterson, G.E. and Carnavale, A., J. Chem. Phys. 56, 48484851 (1972).CrossRefGoogle Scholar
28Bergmann, J. G., Ashkin, A., Ballman, A. A., Dziedzie, J. M., Levinstein, H.J., and Smith, R.G., Appl. Phys. Lett. 12, 9294 (1968).CrossRefGoogle Scholar
29Carruthers, J.R., Peterson, G.E., Grasso, M., and Bridenbaugh, P.M., J. Appl. Phys. 42, 18461851 (1971).CrossRefGoogle Scholar
30Holman, R. L., “Novel Uses of Gravimetry in the Processing of Crystalline Ceramics,” in Mater. Sci. Res. Vol. 2 (Plenum, New York, 1979).Google Scholar
31Boyer, S.G. and Birnie, D.P., III, Proc. SPIE 968, Ceramics and Inorganic Crystals for Optics, Electro-Optics, and Nonlinear Conversion (1988), p. 73.Google Scholar
32O'Bryan, H. M., Gallagher, P. K., and Brandle, C. D., J. Am. Ceram. Soc. 68, 493496 (1985).CrossRefGoogle Scholar
33Scott, B.A. and Burns, G., I. Am. Ceram. Soc. 55, 225230 (1972).CrossRefGoogle Scholar
34Svaasand, L. O., Ericksrud, M., Nakken, G., and Grande, A. P., I. Cryst. Growth 22, 230232 (1974).CrossRefGoogle Scholar
35Ballman, A.A., Levinstein, H.I., Capio, C.D., and Brown, H., J. Am. Ceram. Soc. 50, 657659 (1967).CrossRefGoogle Scholar
36Barns, R. L. and Carruthers, I. R., I. Appl. Crystallogr. 3, 395399 (1970).CrossRefGoogle Scholar
37Fujino, Y., Tsuya, H., and Sugibuchi, K., Ferroelectrics 2, 113117 (1971).CrossRefGoogle Scholar
38Abrahams, S. C. and Marsh, P., Acta Crystallogr. B42, 6168 (1986).CrossRefGoogle Scholar
39Kovacs, L. and Polgar, K., Crystallogr. Res. Technol. 21, K101104 (1986).CrossRefGoogle Scholar
40Smyth, D.M., Ferroelectrics 50, 93102 (1983).CrossRefGoogle Scholar
41Chang, E.K., Mehta, A., and Smyth, D.M., Adv. Ceram. 23, 351359 (1987).Google Scholar
42Birnie, D.P. III, I. Mater. Res. 5, 19331939 (1990).CrossRefGoogle Scholar
43Birnie, D. P. III, I. Appl. Phys. 69, 24852488 (1991).CrossRefGoogle Scholar
44Birnie, D.P. III, J. Am. Ceram. Soc. 74, 988993 (1991).CrossRefGoogle Scholar
45Birnie, D.P. III, in Chemistry of Electronic Ceramic Materials, edited by Davies, P.K. and Roth, R.S., NIST Spec. Pub. 804 (1991), pp. 269274.Google Scholar
46Prieto, C., Zaldo, C., Fessler, P., Dexpert, H., Sanz-Garcia, I. A., and Dieguez, E., Phys. Rev. B 43, 25942600 (1991).CrossRefGoogle Scholar
47Rebouta, L., Soares, I. C., Silva, M.F. Da, Sanz-Garcia, J.A., Dieguez, E., and Agullo-Lopez, F., Nucl. Instrum. Methods in Phys. Res. B50, 428430 (1990).CrossRefGoogle Scholar
48Rebouta, L., Soares, I.C., Silva, M.F. Da, Sanz-Garcia, I.A., Dieguez, E., and Agullo-Lopez, F., Nucl. Instrum. Methods in Phys. Res. B50, 495498 (1990).CrossRefGoogle Scholar
49Birnie, D.P. III, I. Mater. Sci. 28, 302315 (1993).CrossRefGoogle Scholar
50Tomov, T., Engelmann, H., Dezsi, I., and Gonser, U., Solid State Commun. 69, 4144 (1989).CrossRefGoogle Scholar
51Kuene, W., Date, S.K., Dezsi, I., and Gonser, U., I. Appl. Phys. 46, 39143924 (1975).CrossRefGoogle Scholar
52Kuene, W., Date, S. K., Gonser, U., and Bunzel, H., Ferroelectrics 13, 443445 (1976).CrossRefGoogle Scholar
53Tyminski, I. K., Lawson, C. M., and Powell, R. C., I. Chem. Phys. 77, 43184325 (1982).Google Scholar
54Rebouta, L., Soares, I.C., Silva, M.F. da, Sanz-Garcia, I.A., Dieguez, E., and Agullo-Lopez, F., Appl. Phys. Lett. 55, 120121 (1989).CrossRefGoogle Scholar
55Arizmendi, L., Abella, F., and Cabrera, J. M., Ferroelectrics 56, 7578 (1984).CrossRefGoogle Scholar
56Evlanova, N. F., Kornienko, L. S., Rashkovich, L. N., and Rybaltovskii, A. O., Sov. Phys. JETP 26, 10901093 (1968).Google Scholar
57Dischler, B., Herrington, J. R., Rauber, A., and Schneider, J., Solid State Commun. 12, 737740 (1973).CrossRefGoogle Scholar
58McDonald, P. F., Tam, C. P., and Mok, Y. W., J. Chem. Phys. 56, 10071008 (1972).CrossRefGoogle Scholar
59Rexford, D.G., Kim, Y.M., and Story, H.S., J. Chem. Phys. 52, 860863 (1970).CrossRefGoogle Scholar
60Towner, H. H., Kim, Y. M., and Story, H. S., J. Chem. Phys. 56, 36763679 (1972).CrossRefGoogle Scholar
61Engelmann, H., Mouahid, F., Dezsi, I., Molnar, B., Gonser, U., Siebert, D., Dahlem, J., and Tuczek, F., Appl. Phys. A 48, 211217 (1989).CrossRefGoogle Scholar
62For a detailed description of the PAC technique and a brief review of applications to materials science, see Catchen, G. L., J. Mater. Ed. 12, 253295 (1990).Google Scholar
63Catchen, G.L., unpublished work.Google Scholar