Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-28T00:57:11.210Z Has data issue: false hasContentIssue false

High-temperature oxidation of Al–Cu–Fe–Be quasicrystalline powders

Published online by Cambridge University Press:  31 January 2011

E. Fleury
Affiliation:
Yonsei University, Center for Noncrystalline Materials, Department of Metallurgical Engineering, 134 Shinchon-dong, Seodaemun-ku, Seoul, 120-749 Korea
J. S. Kim
Affiliation:
Yonsei University, Center for Noncrystalline Materials, Department of Metallurgical Engineering, 134 Shinchon-dong, Seodaemun-ku, Seoul, 120-749 Korea
D. H. Kim
Affiliation:
Yonsei University, Center for Noncrystalline Materials, Department of Metallurgical Engineering, 134 Shinchon-dong, Seodaemun-ku, Seoul, 120-749 Korea
W. T. Kim
Affiliation:
Chongju University, Department of Physics, Chongju, 360-764 Korea
Get access

Abstract

The oxidation behavior in air of gas atomized Al–Cu–Fe–Be powders was investigated during isothermal exposures at 750, 800, and 830 °C. Oxidation data obtained at 750 °C for Al–Cu–Fe and Al–Cu–Fe–Cr powders are also presented and used as references. Thermogravimetric analyses showed that Be significantly improved the oxidation resistance of the icosahedral phase at 750 °C. At this temperature the i-phase in Al–Cu–Fe–Be powders was found to be stable even after oxidation for 300 h, while oxidation at and beyond 800 °C led to the formation of a cubic β′-phase. Auger analyses suggested that, in addition to its role on the stability of the icosahedral phase, the presence of Be in the oxide layer provided efficient protection against air oxidation at high temperature.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Janot, C., Quasicrystals; A Primer, 2nd ed. (Clarendon Press, Oxford, U.K., 1994), p. 22.Google Scholar
Koester, U., Liu, W., Liebert, H., and Michel, M., J. Non-Cryst. Solids 153–154, 446 (1993).CrossRefGoogle Scholar
Archambault, P. and Janot, C., MRS Bull. 22(11), 48 (1997).CrossRefGoogle Scholar
Kang, S.S., Dubois, J.M., and Stebut, J. von, J. Mater. Res. 8, 2471 (1993).CrossRefGoogle Scholar
Dubois, J.M., Plaindoux, P., Belin-Ferre, E., Tamura, N., Sordelet, D.J., in 6th International Conference on Quasicrystals, edited by Takeuchi, S. and Fujiwara, T. (World Scientific, Singapore, 1997), p. 733.Google Scholar
Dubois, J.M., in Quasicrystals: An Introduction to Structure, Physical Properties and Applications, edited by Suck, J.B., Schreiber, M., and Haussler, P. (Springer-Verlag, Berlin, Germany, 2002), p. 507.CrossRefGoogle Scholar
Kang, S.S. and Dubois, J., J. Mat. Res. 10, 1071 (1995).CrossRefGoogle Scholar
Rouxel, D., Gavatz, M., Pigeat, P., Weber, B., and Plaindoux, P., in New Horizons in Quasicrystals: Research and Applications, edited by Goldman, A.I., Sordelet, D.J., Thiel, P.A., and Dubois, J.M. (World Scientific, Singapore, 1997), p. 173.Google Scholar
Sordelet, D.J., Gunderman, L.A., Besser, M.F., and Akinc, A.B., in New Horizons in Quasicrystals: Research and Applications, edited by Goldman, A.I., Sordelet, D.J., Thiel, P.A., and Dubois, J.M. (World Scientific, Singapore, 1997), p. 296.Google Scholar
Jenks, C.J., Pinhero, P.J., Bloomer, T.E., Chang, C.L., Anderegg, J.W., and Thiel, P.A., in 6th International Conference on Quasicrystals, edited by Takeuchi, S. and Fujiwara, T. (World Scientific, Singapore, 1998), p. 761.Google Scholar
Pinhero, P.J., Sordelet, D.J., Anderegg, J.W., Brunet, P., Dubois, J.M., Thiel, P.A., in Quasicrystals, edited by Dubois, J.M., Thiel, P.A., Tsai, A.P., and Urban, K. (Mater. Res. Soc. Symp. Proc. 553, Warrendale, PA, 1999), p. 263.Google Scholar
Pinhero, P.J., Anderegg, J.W., Sordelet, D.J., Lograsso, T.A., Delaney, D.W., and Thiel, P.A., J. Mater. Res. 14, 3185 (1999).CrossRefGoogle Scholar
Pinhero, P.J., Anderegg, J.W., Sordelet, D.J., Besser, M.F., and Thiel, P.A., Philos. Mag. B 79, 91 (1999).CrossRefGoogle Scholar
Gil-Gavatz, M., Rouxel, D., Pigeat, P., Weber, B., and Dubois, J.M., Philos. Mag. A 80, 2083 (2000).CrossRefGoogle Scholar
Wehner, B.I. and Koester, U., Oxid. Metals 54(5/6), 445 (2000).CrossRefGoogle Scholar
Jedlinski, J., Solid State Phenom. 21–22, 335 (1992).CrossRefGoogle Scholar
Kofstad, P., in The Role of Active Elements in the Oxidation behavior of High Temperature Metals and Alloys, edited by Lang, E. (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1989), p. 367.Google Scholar
Demange, V., Anderegg, J.W., Ghanbaja, J., Machizaud, F., Sordelet, D.J., Besser, M., Thiel, P.A., and Dubois, J.M., Appl. Surf. Sci. 173, 327 (2002).CrossRefGoogle Scholar
Dong, C. and Dubois, J.M., J. Mater. Sci. 26, 1647 (1991).CrossRefGoogle Scholar
Massiani, Y., Ait-Yaazza, S., Crousier, J.P., Dubois, J.M., J. Non-Cryst. Solids 159, 92 (1993).CrossRefGoogle Scholar
Bonhomme, G., Lemieux, M., Weisbecker, P., Tsukruk, V.V., and Dubois, J.M., J. Non-Cryst. Sol. (in press).Google Scholar
Kong, J., Zhou, C., Gong, S., and Xu, H., Surf. Coat. Technol. 165, 281 (2003).CrossRefGoogle Scholar
Yamasaki, M. and Tsai, A.P., J. Alloys Compd. 342, 473 (2002).CrossRefGoogle Scholar
Lee, S.M., Kim, B.H., Kim, S.H., Kim, W.T., and Kim, D.H., Philos. Mag. Lett. 81, 483 (2001).CrossRefGoogle Scholar
Song, G.S., Fleury, E., Lee, S.M., Kim, W.T., and Kim, D.H., Mater. Sci. Eng. A 346, 42 (2003).CrossRefGoogle Scholar
Lide, D.R., Handbook of Chemistry and Physics, 82nd ed. (CRC Press, Boca Raton, FL, 2001) pp. 45.Google Scholar
Lee, S.M., Fleury, E., Kim, J.S., Kim, Y.C., Kim, D.H., Kim, W.T., and Ahn, H.S., in Quasicrystals, edited by Tsai, A.P., Belin-Ferre, E., Thiel, P., and Urban, K. (Mater. Res. Soc. Symp. Proc. 643, Warrendale, PA, 2001), K 15.2.1.–15.2.12.Google Scholar
Swalin, R.A., Thermodynamics of Solids (John Wiley & Sons, Singapore, 1991), p. 88.Google Scholar