Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-28T16:35:25.377Z Has data issue: false hasContentIssue false

High-temperature tensile properties of in situ-synthesized titanium matrix composites with strong dependence on strain rates

Published online by Cambridge University Press:  31 January 2011

Lv Xiao
Affiliation:
State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
Weijie Lu*
Affiliation:
State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
Jining Qin
Affiliation:
State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
Di Zhang
Affiliation:
State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
Minmin Wang
Affiliation:
Department of Titanium Alloy, Special Steel Branch, Baoshan Iron and Steel Co. Ltd., Shanghai 200940, People’s Republic of China
Feng Zhu
Affiliation:
Department of Titanium Alloy, Special Steel Branch, Baoshan Iron and Steel Co. Ltd., Shanghai 200940, People’s Republic of China
Bo Ji
Affiliation:
Department of Titanium Alloy, Special Steel Branch, Baoshan Iron and Steel Co. Ltd., Shanghai 200940, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: luweijie@sjtu.edu.cn
Get access

Abstract

High-temperature titanium matrix composites reinforced with hybrid reinforcements are synthesized by common casting and hot working technologies. Tensile properties are tested at different temperatures and strain rates. Ultimate strengths of the composites are significantly enhanced under all conditions and decrease when the strain rate is lower. Equicohesive temperature of the matrix is around 873 K at the strain rate 10−3s−1 and well below 873 K at 10−5s−1. At higher temperature or lower strain rate, interfacial debonding is more drastic and reduces the strengths of composites. The materials are embrittled under creep-rupture conditions. Strict reinforcement morphology is required for more complex service conditions at high temperatures in metal matrix composites.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Baumann, S.F., Brindly, P.K., Smish, S.D.: Reaction zone microstructure in a Ti3Al + Nb/SiC composite. Metall. Trans. A 21,, 1559 1990CrossRefGoogle Scholar
2Russ, S.M.: Thermal fatigue of Ti-24Al-11Nb/SCS-6. Metall. Trans. A 21,, 1595 1990CrossRefGoogle Scholar
3Sahay, S.S., Ravichandran, K.S., Atri, R., Chen, B., Rubin, J.: Evolution of microstructure and phases in in situ processed Ti-TiB composites containing high volume fractions of TiB whiskers. J. Mater. Res. 14, 4214 1999CrossRefGoogle Scholar
4Soboyejo, W.O., Lederich, R.J., Sastry, S.M.L.: Mechanical behavior of damage tolerant TiB whisker-reinforced in situ titanium matrix composites. Acta Metall. Mater. 42, 2579 1994CrossRefGoogle Scholar
5Ma, Z.Y., Tjong, S.C., Gen, L.: In situ Ti-TiB metal-matrix composite prepared by a reactive pressing process. Scr. Mater. 42, 367 2000CrossRefGoogle Scholar
6Ye, L.L., Liu, Z.G., Quan, M.X., Hu, Z.Q.: Different reaction mechanisms during mechanical alloying Ti50 C50 and Ti33B67. J. Appl. Phys. 80, 1910 1996CrossRefGoogle Scholar
7Gorsse, S., Chaminade, J.P., Petitcorps, Y.L.: In situ preparation of titanium base composites reinforced by TiB single crystals using a powder metallurgy technique. Composites Part A 29, 1229 1998CrossRefGoogle Scholar
8Tjong, S.C., Mai, Y.M.: Processing-structure-property aspects of particulate- and whisker-reinforced titanium matrix composites. Compos. Sci. Technol. 68, 583 2008CrossRefGoogle Scholar
9Zhang, X.N., Lu, W.J., Zhang, D., Wu, R.J., Bian, Y.J., Fang, P.W.: In situ technique for synthesizing (TiB plus TiC)/Ti composites. Scr. Mater. 41, 39 1999CrossRefGoogle Scholar
10Bhat, B.V.R., Subramanyam, J., Prasad, V.V.B.: Preparation of Ti-TiB-TiC & Ti-TiB composites by in situ reaction hot pressing. Mater. Sci. Eng., A 325, 126 2002CrossRefGoogle Scholar
11Zhang, X.H., Xu, Q., Han, J.C., Kvanin, V.L.: Self-propagating high temperature combustion synthesis of TiB/Ti composites. Mater. Sci. Eng., A 348, 41 2003Google Scholar
12Hill, D., Banerjee, R., Huber, D., Tiley, J., Fraser, H.L.: Formation of equiaxed alpha in TiB reinforced Ti alloy composites. Scr. Mater. 52, 387 2005CrossRefGoogle Scholar
13Ranganath, S., Mishra, R.S.: Steady state creep behaviour of particulate-reinforced titanium matrix composites. Acta Mater. 44, 927 1996CrossRefGoogle Scholar
14Bilous, O.O., Artyukh, L.V., Bondar, A.A., Velikanova, T.Y., Burka, M.P., Brodnikovskyi, M.P., Fomichov, O.S., Tsyganenko, N.I., Firstov, S.O.: Effect of boron on the structure and mechanical properties of Ti-6Al and Ti-6Al-4V. Mater. Sci. Eng., A 402, 76 2005CrossRefGoogle Scholar
15Sastry, S.M.L., Meschter, P.J., O’Neal, J.E.: Structure and properties of rapidly solidified dispersion-strengthened titanium alloys. I. Characterization of dispersoid distribution, structure, and chemistry. Metall. Trans. A 15, 1451 1984CrossRefGoogle Scholar
16de Castro, V., Leguey, T., Munoz, A., Monge, M.A., Pareja, R.: Microstructure and tensile properties of Y2O3-dispersed titanium produced by arc melting. Mater. Sci. Eng., A 422, 189 2006CrossRefGoogle Scholar
17Yang, Z.F., Lu, W.J., Xu, D., Qin, J.N., Zhang, D.: In situ synthesis of hybrid and multiple-dimensioned titanium matrix composites. J. Alloys Compd. 419, 76 2006CrossRefGoogle Scholar
18Yang, Z.F., Lu, W.J., Qin, J.N., Zhang, D.: Microstructure and tensile properties of in situ synthesized (TiC+TiB+Nd2O3)/Ti-alloy composites at elevated temperature. Mater. Sci. Eng., A 425, 185 2006CrossRefGoogle Scholar
19Geng, K., Lu, W.J., Zhang, D.: Microstructure and tensile properties of in situ synthesized (TiB+Y2O3)/Ti composites at elevated temperature. Mater. Sci. Eng., A 360, 176 2003CrossRefGoogle Scholar
20Gorsse, S., Miracle, D.B.: Mechanical properties of Ti-6Al-4V/TiB composites with randomly oriented and aligned TiB reinforcements. Acta Mater. 51, 2427 2003CrossRefGoogle Scholar
21Geng, K., Lu, W.J., Zhang, D., Sakata, T., Mori, H.: Tensile properties of in situ synthesized titanium matrix composites reinforced by TiB and Nd2O3 at elevated temperature. Mater. Des. 24, 409 2003CrossRefGoogle Scholar
22Hagiwara, M., Arimoto, N., Emura, S., Kawabe, Y., Suzuki, H.G.: Mechanical properties of particulate reinforced titanium-based metal matrix composites produced by the blended elemental P/M route. ISIJ Int. 32, 909 1992CrossRefGoogle Scholar
23Yang, Z.F., Lu, W.J., Zhao, L., Lu, J.Q., Qin, J.N., Zhang, D.: In situ synthesis of hybrid-reinforced titanium matrix composites. Mater. Lett. 61, 2368 2007CrossRefGoogle Scholar
24Xiao, L., Lu, W., Yang, Z., Qin, J., Zhang, D., Wang, M., Zhu, F., Ji, B.: Effect of reinforcements on high temperature mechanical properties of in situ synthesized titanium matrix composites. Mater. Sci. Eng., A 491, 192 2008 DOI:10.1016/j.msea.2008.01. 077CrossRefGoogle Scholar
25Dorn, J.E.: Mechanical Behaviour of Materials at Elevated Temperature McGraw-Hill New York 1961Google Scholar
26Cox, H.L.: The elasticity and strength of paper and other fibrous materials. Br. J. Appl. Phys. 3, 72 1952CrossRefGoogle Scholar
27Mullin, J., Berry, J.M., Gatti, A.: Some fundamental fracture mechanisms applicable to advanced filament reinforced composites. J. Compos. Mater. 2, 82 1968CrossRefGoogle Scholar
28Villars, P., Prince, A., Okamoto, H.: Handbook of ternary alloy phase diagrams ASM International Materials Park, OH 1995Google Scholar
29Ramakrishnan, N.: An analytical study on strengthening of particulate reinforced metal matrix composites. Acta Mater. 44, 69 1996CrossRefGoogle Scholar
30Ramamurty, U., Dary, F-C., Zok, F.W.: A method for measuring residual strains in fiber-reinforced titanium matrix composites. Acta Mater. 44, 3397 1996CrossRefGoogle Scholar