Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-28T00:49:43.169Z Has data issue: false hasContentIssue false

Homoepitaxial (111) diamond grown by temperature-controlled chemical vapor deposition

Published online by Cambridge University Press:  31 January 2011

Mikka Nishitani-Gamo
Affiliation:
Core Research for Evolutional Science and Technology (CREST) of Japan Science and Technology Corporation (JST), c/o National Institute for Research in Inorganic Materials (NIRIM), 1–1 Namiki, Tsukuba, Ibaraki 305–0044, Japan
Isao Sakaguchi
Affiliation:
Core Research for Evolutional Science and Technology (CREST) of Japan Science and Technology Corporation (JST), c/o National Institute for Research in Inorganic Materials (NIRIM), 1–1 Namiki, Tsukuba, Ibaraki 305–0044, Japan
Tomohide Takami
Affiliation:
Core Research for Evolutional Science and Technology (CREST) of Japan Science and Technology Corporation (JST) and Research Institute for Scientific Measurements (RISM), Tohoku University, 2–1-1 Katahira, Sendai 980–8577, Japan
Katsunori Suzuki
Affiliation:
Core Research for Evolutional Science and Technology (CREST) of Japan Science and Technology Corporation (JST) and Research Institute for Scientific Measurements (RISM), Tohoku University, 2–1-1 Katahira, Sendai 980–8577, Japan
Isao Kusunoki
Affiliation:
Core Research for Evolutional Science and Technology (CREST) of Japan Science and Technology Corporation (JST) and Research Institute for Scientific Measurements (RISM), Tohoku University, 2–1-1 Katahira, Sendai 980–8577, Japan
Toshihiro Ando
Affiliation:
Core Research for Evolutional Science and Technology (CREST) of Japan Science and Technology Corporation (JST), c/o NIRIM, 1–1 Namiki, Tsukuba, Ibaraki 305–0044, Japan
Get access

Abstract

We investigated the growth of high-quality homoepitaxial diamond on the (111) face in a microwave-assisted plasma chemical-vapor-deposition system incorporating an individual substrate heating/cooling device. The grown diamond films were characterized by scanning electron microscopy, reflection high-energy electron diffraction, atomic force microscopy, confocal micro-Raman spectroscopy, and secondary ion mass spectrometry. The (111) diamond films show a tendency to incorporate a significant amount of hydrogen during chemical-vapor-deposition growth. Hydrogen incorporation degrades the crystal quality and surface smoothness. The amount of incorporated hydrogen decreases with the decrease in deposition temperature. We have shown that the crystal quality and surface smoothness of homoepitaxial diamond strongly depend on the substrate temperature. Independent control of the substrate temperature and incident microwave power is essential for high-quality diamond homoepitaxy.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Badzian, A. and Badzian, T., Diamond Relat. Mater. 2, 147 (1993).Google Scholar
2.Tsuno, T., Tomikawa, T., and Shikata, S., Appl. Phys. Lett. 64, 572 (1994).Google Scholar
3.Kuang, Y., Lee, N., Badzian, A., Tsong, T.T., Badzian, T., and Chen, C., Diamond Relat. Mater. 4, 1371 (1995).CrossRefGoogle Scholar
4.Lee, N. and Badzian, A., Diamond Relat. Mater. 6, 130 (1997).Google Scholar
5.Nakazawa, H., Kanazawa, Y., Kamo, M., and Osumi, K., Thin Solid Films 151, 199 (1987).CrossRefGoogle Scholar
6.Kamo, M., Yurimoto, H., and Sato, Y., Appl. Surf. Sci. 33/34, 553 (1988).Google Scholar
7.van Enckevort, W.J.P., Janssen, G., and Gilling, L.J., J. Cryst. Growth 113, 295 (1991).CrossRefGoogle Scholar
8.Sutcu, L.F., Chu, C.J., Thompson, M.S., Hauge, R.H., Margrave, J.L., and Evelyn, M.P.D, J. Appl. Phys. 71, 5930 (1992).Google Scholar
9.van Enckevort, W.J.P., Janssen, G., Vollenberg, W., Chermin, M., Gilling, L.J., and Seal, M., Surf. Coat. Technol. 47, 39 (1991).Google Scholar
10.Chu, C.J., Evelyn, M.P.D, Hauge, R.H., and Margrave, J.L., J. Appl. Phys. 70, 1695 (1991).CrossRefGoogle Scholar
11.Dufour, C.F., Vignes, A., and Gicquel, A., Diamond Relat. Mater. 4, 429 (1995).CrossRefGoogle Scholar
12.Tsuno, T., Tomikawa, T., Shikata, S., and Fujimori, N., J. Appl. Phys. 75, 1526 (1994).Google Scholar
13.Sakaguchi, I., N-Gamo, M., Loh, K.P., Haneda, H., Hishita, S., and Ando, T., Appl. Phys. Lett. 71, 629 (1997).Google Scholar
14.N-Gamo, M., Sakaguchi, I., Loh, K.P., Takami, T., Kusunoki, I., and Ando, T., Diamond Relat. Mater. 8, 693 (1999).Google Scholar
15.Gamo, M.N-, Ando, T., Yamamoto, K., Watanabe, K., Dennig, P.A., Sato, Y., and Sekita, M., Appl. Phys. Lett. 70, 1530 (1997).Google Scholar
16.Takami, T., Suzuki, K., Kusunoki, I., Sakaguchi, I., N-Gamo, M., and Ando, T., Surf. Sci. (in press).Google Scholar
17.Gamo, M.N-, Sakaguchi, I., Loh, K.P., Takami, T., Kusunoki, I., and Ando, T., J. Vac. Sci. Technol., A (in press).Google Scholar
18.Kitabatake, M., Deguchi, M., and Hirao, T., J. Appl. Phys. 74, 4438 (1993).Google Scholar
19.Lagally, M.G., Methods Exp. Phys. 22, 238 (1985).Google Scholar
20.Stuart, S-A., Prawer, S., and Weiser, P.S., Appl. Phys. Lett. 62, 1227 (1993).Google Scholar
21.Sakaguchi, I., Gamo, M. N.-, Loh, K.P., Haneda, H., and Ando, T., J. Appl. Phys. 86, 1306 (1999).CrossRefGoogle Scholar