Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-29T13:51:00.042Z Has data issue: false hasContentIssue false

Hybrid nanocomposite coatings for corrosion protection of low carbon steel: A substrate-integrated and scalable active–passive approach

Published online by Cambridge University Press:  11 March 2011

Tapan K. Rout*
Affiliation:
Research, Development and Technology, Tata Steel Group (Europe), 1760-Ijmuiden, The Netherlands
Anil V. Gaikwad*
Affiliation:
Research, Development and Technology, Tata Steel Group (Europe), 1760-Ijmuiden, The Netherlands
Vincent Lee
Affiliation:
Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260-3000
Sarbajit Banerjee*
Affiliation:
Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260-3000
*
a)Address all correspondence to these authors. e-mail: tapan-kumar.rout@corusgroup.com
Get access

Abstract

A facile, efficacious, and practical multifunctional paradigm has been developed for imparting corrosion resistance to low carbon steel based on the direct in situ growth of carbon nanofibers (CNF) onto steel substrates followed by infusion of a polymer matrix. The polymer layer locks into place between the nanofibers, simultaneously preventing coating delamination and imparting unprecedented surface passivation properties. The novel hybrid nanocomposite coatings maintain structural integrity even after 30 days of exposure to saline corrosive environments, indicating unprecedented corrosion protection derived from the redox-active nature of the CNF fillers and their excellent dispersion within the polymer matrix. These remarkable coating properties are further enhanced by the strong adhesion of the host polymer to the underlying steel substrate.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Njuguna, J., Pielichowski, K., and Desai, S.: Nanofiller-reinforced polymer nanocomposites. Polym. Adv. Technol. 19, 947 (2008).CrossRefGoogle Scholar
2.Rout, T.K., Jha, G., Singh, A.K., Bandyopadhyay, N., and Mohanty, O.N.: Development of conducting polyaniline coating: A novel approach to superior corrosion resistance. Surf. Coat. Tech. 167, 16 (2003).CrossRefGoogle Scholar
3.Iqbal, Z., Narasimhan, D., Guiheen, J.V., and Rehg, T.: U.S. No. Patent No. 6,864,007.Google Scholar
4.Lee, Y.B., Lee, C.H., and Lim, D.S.: The electrical and corrosion properties of carbon nanotube coated 304 stainless steel/polymer composite as PEM fuel cell bipolar plates. Int. J. Hydrogen Energy. 34, 9781 (2009).CrossRefGoogle Scholar
5.Wang, S.C., Yang, H., Banerjee, S., Herman, I.P., and Akins, D.L.: AOT dispersed single-walled carbon nanotubes for transistor device application. Mater. Lett. 62, 843 (2008).CrossRefGoogle Scholar
6.Kim, H.M., Kim, K., Lee, C.Y., Joo, J., Cho, S.J., Yoon, H.S., Pejakoviá, D.A., Yoo, J.W., and Epstein, A.J.: Electrical conductivity and electromagnetic interference shielding of multiwalled carbon nanotube composites containing Fe catalyst. Appl. Phys. Lett. 84, 589 (2004).CrossRefGoogle Scholar
7.Chung, D.D.L.: Electromagnetic interference shielding effectiveness of carbon materials. Carbon. 39, 279 (2001).CrossRefGoogle Scholar
8.Yan, M., Wang, J., Han, E., and Ke, W.: Local environment under simulated disbonded coating on steel pipelines in soil solution. Corros. Sci. 50, 1331 (2008).CrossRefGoogle Scholar
9.Beavers, J.A. and Harle, B.A.: Mechanisms of High-pH and Near-Neutral-pH SCC of underground pipelines. J. Offshore Mech. Arc. Eng. 123, 147 (2001).CrossRefGoogle Scholar
10.Bellucci, F., Nicodemo, L., Monetta, T., Kloppers, M.J., and Latanision, R.M.: A study of corrosion initiation on polyimide coatings. Corros. Sci. 33, 1203 (1992).CrossRefGoogle Scholar
11.Schilling, P., Herrington, P., Daigle, E., and Meletis, E.: Surface characteristics of structural steel processed using electro-plasma techniques. J. Mater. Eng. Perform. 11, 26 (2002).CrossRefGoogle Scholar
12.Roy, D., Simon, G.P., Forsyth, M., and Mardel, J.: Towards a better understanding of the cathodic disbondment performance of polyethylene coatings on steel. Adv. Polym. Technol. 21, 44 (2002).CrossRefGoogle Scholar
13.Wielant, J., Posner, R., Grundmeier, G., and Terryn, H.: Interface dipoles observed after adsorption of model compounds on iron oxide films: Effect of organic functionality and oxide surface chemistry. J. Phys. Chem. C. 112, 12951 (2008).CrossRefGoogle Scholar
14.Sathiyanarayanan, S., Azim, S.S., and Venkatachari, G.: A new corrosion protection coating with polyaniline-TiO2 composite for steel. Electrochim. Acta. 52, 2068 (2007).CrossRefGoogle Scholar
15.Romano, A.P., Olivier, M.G., Nazarov, A., and Thierry, D.: Influence of crosslinking density of a cataphoretic coating on initiation and propagation of filiform corrosion of AA6016. Prog. Org. Coat. 66, 173 (2009).CrossRefGoogle Scholar
16.Crosby, A.J. and Lee, J.-Y.: Polymer nanocomposites: The “nano” effect on mechanical properties. Pol. Rev. 47, 217 (2007).CrossRefGoogle Scholar
17.Noor, A.K. and Venneri, S.L.: Advanced Metallics, Metal-Matrix and Polymer-Matrix Composites, Vol. 2. (The Society of Mechanical Engineers, New York, 1994).Google Scholar
18.Vander Wal, R. and Hall, L.: Nanotube coated metals: New reinforcement materials for polymer matrix composites. Adv. Mater. 14, 1304 (2002).3.0.CO;2-B>CrossRefGoogle Scholar
19.Zhu, L., Chang, D.W., Dai, L., and Hong, Y.: DNA damage induced by multiwalled carbon nanotubes in mouse embryonic stem cells. Nano Lett. 7, 3592 (2007).CrossRefGoogle ScholarPubMed
20.Hill, D., Lin, Y., Qu, L., Kitaygorodskiy, A., Connell, J.W., Allard, L.F., and Sun, Y.-P.: Functionalization of carbon nanotubes with derivatized polyimide. Macromolecules. 38, 7670 (2005).CrossRefGoogle Scholar
21.Govindaraj, A. and Rao, C.N.R.: Organometallic precursor route to carbon nanotubes. Pure Appl. Chem. 74, 1571 (2002).CrossRefGoogle Scholar
22.Talapatra, S., Kar, S., Pal, S.K., Vajtai, R., Ci, L., Victor, P., Shaijumon, M.M., Kaur, S., Nalamasu, O., and Ajayan, P.M.: Direct growth of aligned carbon nanotubes on bulk metals. Nat. Nanotechnol. 1, 112 (2006).CrossRefGoogle ScholarPubMed
23.Thostenson, E.T., Ren, Z., and Chou, T.-W.: Advances in the science and technology of carbon nanotubes and their composites: A review. Compos. Sci. Technol. 61, 1899 (2001).CrossRefGoogle Scholar
24.Fenouillot, F., Cassagnau, P., and Majesté, J.C.: Uneven distribution of nanoparticles in immiscible fluids: Morphology development in polymer blends. Polymer (Guildf.). 50, 1333 (2009).CrossRefGoogle Scholar
25.Dai, H.: Carbon nanotubes: Synthesis, integration, and properties. Acc. Chem. Res. 35, 1035 (2002).CrossRefGoogle ScholarPubMed
26.Baddour, C.E., Fadlallah, F., Nasuhoglu, D., Mitra, R., Vandsburger, L., and Meunier, J.-L.: A simple thermal CVD method for carbon nanotube synthesis on stainless steel 304 without the addition of an external catalyst. Carbon. 47, 313 (2009).CrossRefGoogle Scholar
27.Kolasinski, K.W.: Catalytic growth of nanowires: Vapor-liquid-solid, vapor-solid-solid, solution-liquid-solid and solid-liquid-solid growth. Curr. Opin. Solid State Mater. Sci. 10, 182 (2006).CrossRefGoogle Scholar
28.Huang, L., White, B.E., Sfeir, M.Y., Huang, M., Huang, H.X., Wind, S., Hone, J., and O’Brien, S.: Cobalt ultrathin film catalyzed ethanol chemical vapor deposition of single-walled carbon nanotubes. J. Phys. Chem. B. 100, 11103 (2006).CrossRefGoogle Scholar
29.Wise, K.E., Park, C., Siochi, E.J., and Harrison, J.S.: Stable dispersion of single wall carbon nanotubes in polyimide: The role of noncovalent interactions. Chem. Phys. Lett. 391, 207 (2004).CrossRefGoogle Scholar
30.Schaefer, D.W. and Justice, R.S.: How nano are nanocomposites? Macromolecules. 40, 8501 (2007).CrossRefGoogle Scholar
31.Yang, Z., Chen, X., Chen, C., Li, W., Zhang, H., Xu, L., and Yi, B.: Noncovalent-wrapped sidewall functionalization of multiwalled carbon nanotubes with polyimide. Poly. Compos. 28, 36 (2007).CrossRefGoogle Scholar
32.Mo, T.C., Wang, H.W., Chen, S.Y., and Yeh, Y.C.: Synthesis and characterization of polyimide/multi-walled carbon nanotube nanocomposites. Polym. Compos. 29, 451 (2008).CrossRefGoogle Scholar
33.Wang, Y., Wang, P., Kohls, D., Hamilton, W.A., and Schaefer, D.W.: Water absorption and transport in bis-silane films. Phys. Chem. Chem. Phys. 11, 161 (2009).CrossRefGoogle ScholarPubMed
34.Wang, P. and Schaefer, D.W.: Salt exclusion in silane-laced epoxy coatings. Langmuir. 26, 234 (2009).CrossRefGoogle Scholar
35.Wessling, B.: Passivation of metals by coating with polyaniline: Corrosion potential shift and morphological changes. Adv. Mater. 6, 225 (1994).CrossRefGoogle Scholar