Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-30T23:16:58.823Z Has data issue: false hasContentIssue false

Hybrid processing and properties of Ni0.8Zn0.2Fe2O4/Ba0.6Sr0.4TiO3 magnetodielectric composites

Published online by Cambridge University Press:  31 January 2011

Haibo Yang
Affiliation:
Electronic Materials Research Laboratory, Key Laboratory of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China; and School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
Li He
Affiliation:
Electronic Materials Research Laboratory, Key Laboratory of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
Get access

Abstract

Ni0.8Zn0.2Fe2O4/Ba0.6Sr0.4TiO3 (NZO/BST) composites with high permittivity and low loss were synthesized via the hybrid processing route. The composites possess very dense and homogenous microstructure. The NZO/BST composites show good dielectric properties and magnetic properties with low loss in high frequency range. This indicates that this kind of magnetodielectric composites can be used in high-frequency communications for the capacitor-inductor integrating devices such as electromagnetic interference filters and antennas. The permittivities of the composites were also fitted using the combination of Maxwell–Wagner polarization and modified Curie–Weiss law.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Nan, C.W.Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases. Phys. Rev. B 50, 6082 (1994)CrossRefGoogle ScholarPubMed
2.Fiebig, M.Revival of the magnetoelectric effect. J. Phys. D: Appl. Phys. 38, R123 (2005)CrossRefGoogle Scholar
3.Kanai, T., Ohkoshi, S.I., Nakajima, A., Watanabe, T., Hashimoto, K.A ferroelectric ferromagnet composed of (PLZT)x(BiFeO3)1–x solid solution. Adv. Mater. 13, 487 (2001)3.0.CO;2-L>CrossRefGoogle Scholar
4.Kim, K.Y., Tae, H.S., Lee, J.H.Measurement of dielectric and radiation losses for flexible circular dielectric waveguides in Q-band. Microwave Opt. Technol. Lett. 35, 102 (2002)CrossRefGoogle Scholar
5.Bammannavar, B.K., Naik, L.R.Electrical properties and magnetoelectric effect in (x)Ni0.5Zn0.5Fe2O4 + (1–x)BPZT composites. Smart Mater. Struct. 18, 085013 (2009)CrossRefGoogle Scholar
6.Gupta, A., Chatterjee, R.Magnetic, dielectric, magnetoelectric, and microstructural studies demonstrating improved magnetoelectric sensitivity in three-phase BaTiO3–CoFe2O4-poly(vinylidene-fluoride) composite. J. Appl. Phys. 106, 024110 (2009)CrossRefGoogle Scholar
7.Peng, T.M., Hsu, R.T., Jean, J.H.Low-fire processing and properties of ferrite + dielectric ceramic composite. J. Am. Ceram. Soc. 89, 2822 (2006)CrossRefGoogle Scholar
8.Shen, J.H., Bai, Y., Zhou, J., Li, L.T.Magnetic properties of a novel ceramic ferroelectric–ferromagnetic composite. J. Am. Ceram. Soc. 88, 3440 (2005)CrossRefGoogle Scholar
9.Su, H., Zhang, H.W., Tang, X.L., Jing, Y.L., Zhong, Z.Y.Dielectric and magnetic properties of low-temperature fired NiCuZn–BaTiO3 composites. J. Magn. Magn. Mater. 321, 2763 (2009)CrossRefGoogle Scholar
10.Ling, W.W., Zhang, H.W., Song, Y.Q., Liu, Y.L., Li, Y.X., Su, H.Low-temperature sintering and electromagnetic properties of ferroelectric–ferromagnetic composites. J. Magn. Magn. Mater. 321, 2871 (2009)CrossRefGoogle Scholar
11.Yang, H.B., Wang, H., Xiang, F., Yao, X.Multifunctional SrTiO3/NiZn ferrite/POE composites with eletromagnetic and flexible properties for RF applications. J. Electroceram. 22, 221 (2009)CrossRefGoogle Scholar
12.Nan, C.W., Bichurin, M.I., Dong, S.X., Viehland, D., Srinivasan, G.Multiferroic magnetoelectric composites: Historical perspective, status and future directions. J. Appl. Phys. 103, 031101 (2008)CrossRefGoogle Scholar
13.Yang, H.B., Wang, H., Xiang, F., Yao, X.Microstructure and electromagnetic properties of SrTiO3/Ni0.8Zn0.2Fe2O4 composites by hybrid process. J. Am. Ceram. Soc. 92, 2005 (2009)CrossRefGoogle Scholar
14.Hidaka, N., Ishitsuka, M., Shirakata, Y., Teramoto, A., Ohmi, T.The electric properties of low-magnetic-loss magnetic composites containing Zn–Ni–Fe particles. J. Phys. Condens. Matter 21, 436009 (2009)CrossRefGoogle ScholarPubMed
15.Phang, S.W., Tadokoro, M., Watanabe, J., Kuramoto, N.Effect of Fe3O4 and TiO2 addition on the microwave absorption property of polyaniline micro/nanocomposites. Polym. Adv. Technol. 20, 550 (2009)CrossRefGoogle Scholar
16.Agrawal, S., Cheng, J.P., Guo, R.Y., Bhalla, A.S., Islam, R.A., Priya, S.Magnetoelectric properties of microwave sintered particulate composites. Mater. Lett. 63, 2198 (2009)CrossRefGoogle Scholar
17.Iordan, A.R., Airimioaiei, M., Palamaru, M.N., Galassi, C., Sandu, A.V., Ciomaga, C.E., Prihor, F., Mitoseriu, L., Ianculescu, A.In situ preparation of CoFe2O4–Pb(ZrTi)O3 multiferroic composites by gel-combustion technique. J. Eur. Ceram. Soc. 29, 2807 (2009)CrossRefGoogle Scholar
18.Yuan, G.L., Baba-Kishi, K.Z., Liu, J.M., Or, S.W., Wang, Y.P., Liu, Z.G.Multiferroic properties of single-phase Bi0.85La0.15FeO3 lead-free ceramics. J. Am. Ceram. Soc. 89, 3136 (2006)CrossRefGoogle Scholar
19.Wang, Y.J., Or, S.W., Chan, H.L.W., Zhao, X.Y., Luo, H.S.Enhanced magnetoelectric effect in longitudinal-transverse mode terfenol-D/Pb(Mg1/3Nb2/3)O3–PbTiO3 laminate composites with optimal crystal cut. J. Appl. Phys. 103, 124511 (2008)CrossRefGoogle Scholar
20.Zhang, H.F., Or, S.W., Chan, H.L.W.Multiferroic properties of Ni0.5Zn0.5Fe2O4–Pb(Zr0.53Ti0.47)O3 ceramic composites. J. Appl. Phys. 104, 104109 (2008)CrossRefGoogle Scholar
21.Zhang, H.F., Yao, X., Zhang, L.Y.Microstructure and dielectric properties of barium strontium titanate thick films and ceramics with a concrete-like structure. J. Am. Ceram. Soc. 90, 2333 (2007)CrossRefGoogle Scholar
22.Sun, M.Z.Base of Dielectric Physics (South China University of Technology Press, Guangzhou, China 2005)114115Google Scholar
23.Garcia, S., Font, R., Portelles, J., Quinones, R.J., Heiras, J., Siqueiros, J.M.Effect of Nb doping on (Sr, Ba)TiO3 (BST) ceramic samples. J. Electroceram. 6, 101 (2001)CrossRefGoogle Scholar
24.Haquea, M.M., Huq, M., Hakim, M.A.Densification, magnetic and dielectric behaviour of Cu-substituted Mg–Zn Ferrites. Mater. Chem. Phys. 112, 580 (2008)CrossRefGoogle Scholar
25.Wang, C.C., Cui, Y.M., Zhang, L.W.Dielectric properties of TbMnO3 ceramics. Appl. Phys. Lett. 90, 012904 (2007)CrossRefGoogle Scholar
26.Adams, T.B., Sinclair, D.C., West, A.R.Giant barrier layer capacitance effects in CaCu3Ti4O12 ceramics. Adv. Mater. 14, 1321 (2002)3.0.CO;2-P>CrossRefGoogle Scholar
27.Liu, J.J., Duan, C.G., Yin, W.G., Mei, W.N., Smith, R.W., Hardy, J.R.Large dielectric constant and Maxwell–Wagner relaxation in Bi2/3Cu3Ti4O12. Phys. Rev. B 70, 144106 (2004)CrossRefGoogle Scholar
28.Lin, Y.Q., Chen, X.M.Dielectric relaxations in Sr0.5Ba0.5Nb2O6/CoFe2O4 high-ε magnetoelectric composite ceramics. Mater. Chem. Phys. 117, 125 (2009)CrossRefGoogle Scholar
29.Wang, C.C., Lu, H.B., Jin, K.J., Yang, G.Z.Temperature-dependent dielectric strength of a Maxwell–Wagner type relaxation. Mod. Phys. Lett. B 22, 1297 (2008)CrossRefGoogle Scholar
30.Samara, G.A.The relaxational properties of compositionally disordered ABO3 perovskites. J. Phys. Condens. Matter 15, R367 (2003)CrossRefGoogle Scholar
31.Rikukawa, H.Relationship between microstructures and magnetic properties of ferrites containing closed pores. IEEE Trans. Magn. 18, 1535 (1982)CrossRefGoogle Scholar
32.Snoek, J.L.New developments in ferromagnetic materials. Physica (Amsterdam) 14, 207 (1948)CrossRefGoogle Scholar
33.Van de Zagg, P.J.New views on the dissipation in soft magnetic ferrites. J. Magn. Magn. Mater. 196–197, 315 (1999)CrossRefGoogle Scholar
34.Yan, M., Peng, X.L.Base of Magnetism and Magnetic Materials (Zhejiang University Press, Hangzhou, China 2006)8485Google Scholar