Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-05T02:26:42.806Z Has data issue: false hasContentIssue false

Hydration behavior of MgO single crystals and thin films

Published online by Cambridge University Press:  31 January 2011

Jung Heon Lee
Affiliation:
School of Materials Science and Engineering, Seoul National University, Seoul 151-744, Korea
Jae Hwan Eun
Affiliation:
School of Materials Science and Engineering, Seoul National University, Seoul 151-744, Korea
Soo Gil Kim
Affiliation:
Department of Electronic Engineering, Kyungwon University, Seongnam 461-701, Korea
Sun Young Park
Affiliation:
School of Materials Science and Engineering, Seoul National University, Seoul 151-744, Korea
Mi Jung Lee
Affiliation:
School of Materials Science and Engineering, Seoul National University, Seoul 151-744, Korea
Hyeong Joon Kim
Affiliation:
School of Materials Science and Engineering, Seoul National University, Seoul 151-744, Korea
Get access

Abstract

MgO single crystals and thin films were intentionally hydrated to determine the critical factors affecting the hydration behavior. The degree of hydration was affected by the crystallographic orientation in the initial stages. The (111) plane showed a higher tendency to hydrate than (100). The shape of the hydration clusters also differed according to the orientation of MgO single crystals. After long-term hydration, the density and grain size appeared to influence the hydration along with the orientation. On low-density thin films, Mg atoms are easily supplied to the surface, which induces large hydration clusters. As the grain boundary area increased, the number of nucleation sites for the formation of hydration clusters increased, which increases the number of clusters. Hydration also occurred in the inner part of thin films. The density of thin films is the most important property in this case because it governs the diffusion of Mg atoms, water, and OH through the thin films.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kim, S.G., Ph.D. Thesis, Seoul National University, Seoul, Korea (2002).Google Scholar
2.Kim, R., Kim, Y., and Park, J.W., Thin Solid Films 376, 183 (2000).CrossRefGoogle Scholar
3.Urade, T., Iemori, T., Osawa, M., and Nakayama, N., IEEE Trans. Electron Devices, 23, 313 (1976).CrossRefGoogle Scholar
4.Uchiike, H., Miura, K., Nakayama, N., Shinoda, T., and Fukushima, Y., IEEE Trans. Electron Devices 23, 1211 (1976).CrossRefGoogle Scholar
5.Henrich, V.E., and Cox, P.A., The Surface Science of Metal Oxide (Cambridge University Press, New York, 1994).Google Scholar
6.Kuroda, Y., Yasugi, E., Aoi, H., Miura, K., and Morimoto, T., J. Chem. Soc., Faraday Trans. 1 84, 2421 (1988).CrossRefGoogle Scholar
7.Engkvist, O. and Stone, A.J., Surf. Sci. 437, 239 (1999).CrossRefGoogle Scholar
8.Kim, J.K., Moon, K.S., Whang, K.W., and Lee, J.H., J. Vac. Sci. Technol. B 19, 687 (2001).CrossRefGoogle Scholar
9.Finocchi, F. and Goniakowski, J., Phys. Rev. B 64, 125426 (2001).CrossRefGoogle Scholar
10.Giordano, L., Goniakowski, J., and Suzanne, J., Phys. Rev. B 62, 15406 (2000).CrossRefGoogle Scholar
11.Klingo, V.V., AIP Conf. Proc. 534, 351 (2000).CrossRefGoogle Scholar
12.Odelius, M., Phys. Rev. Lett. 82, 3919 (1999).CrossRefGoogle Scholar
13.Almeida, A.L., Martins, J.B., Taft, C.A., Longo, E., and Lester, W.A., Jr, J. Chem. Phys. 109, 3671 (1998).CrossRefGoogle Scholar
14.Marmier, A., Hoang, P.N.M., Picaud, S., Girardet, C., and Lynden-Bell, R.M., J. Chem. Phys. 109, 3245 (1998).CrossRefGoogle Scholar
15.Stirniman, M.J., Huang, C., Smith, R.S., Joyce, S.A., and Kay, B.D., J. Chem. Phys. 105, 1295 (1998).CrossRefGoogle Scholar
16.Aboelfotoh, M.O., Park, K.C., and Pliskin, W.A., J. Appl. Phys. 48, 2910 (1977).CrossRefGoogle Scholar
17.Kim, B.I., Hong, J.W., Jeong, G.T., and Moon, S.H., J. Vac. Sci. Technol. B 12, 1631 (1994).CrossRefGoogle Scholar
18.Kruger, B., Williams, Q., and Jeanloz, R., J. Chem. Phys. 91, 5910 (1989).CrossRefGoogle Scholar
19.Zigan, F. and Rothbauer, R., Neus. Jahr. Mineralg. Monatschefte 4–5, 137 (1967).Google Scholar
20.Liu, P., Kendelewicz, T., Brown, G.E. Jr, and Parks, G.A., Surf. Sci. 412/413, 287 (1998).CrossRefGoogle Scholar
21.Wogelius, R.A., Refson, K., Fraser, D.G., Grime, G.W., and Goff, J.P., Geochim. Cosmochim. Acta 59, 1875 (1995).CrossRefGoogle Scholar
22.Refson, K., Wogelius, R.A., Fraser, D.G., Payne, M.C., Lee, M.H., and Milman, V., Phys. Rev. B 52, 10823 (1995).CrossRefGoogle Scholar
23.Johnson, M.A., Stefanovich, E.V., Truong, T.N., Gunster, J., and Goodman, D.W., J. Phys. Chem. B 103, 3391 (1999).CrossRefGoogle Scholar
24.Scamehorn, C.A., Harrison, N.M., and McCarthy, M.I., J. Chem. Phys. 101, 1547 (1994).CrossRefGoogle Scholar
25.Mejias, J.A., Berry, A.J., Refson, K., and Fraster, D.G., Chem. Phys. Lett. 314, 558 (1999).CrossRefGoogle Scholar