Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-28T16:08:09.295Z Has data issue: false hasContentIssue false

Hydration phase transitions and magnetic properties of vermiculite intercalation compounds

Published online by Cambridge University Press:  31 January 2011

N. Wada
Affiliation:
Schlumberger-Doll Research, Old Quarry Road, Ridgefield, Connecticut 06877-4108
Masatsugu Suzuki
Affiliation:
Schlumberger-Doll Research, Old Quarry Road, Ridgefield, Connecticut 06877-4108
D. R. Hines
Affiliation:
Schlumberger-Doll Research, Old Quarry Road, Ridgefield, Connecticut 06877-4108
K. Koga
Affiliation:
Institute for Solid State Physics, University of Tokyo, Minato-ku, Tokyo 106, Japan
H. Nishihara
Affiliation:
Institute for Solid State Physics, University of Tokyo, Minato-ku, Tokyo 106, Japan
Get access

Abstract

Experimental results from x-ray scattering, Raman scattering, neutron scattering, and magnetic susceptibility measurements are presented to discuss hydration states and magnetic orderings in vermiculite intercalation compounds. In Na-vermiculite, the hydration transitions between 2- and I-water layer hydration states (WLHS), and 1- and 0-WLHS were studied as a function of temperature from 22–200°C. The transitions are of first order, exhibiting phase coexistence and large hysteresis. In Ni-vermiculite, de susceptibility measurements showed both magnetic-field directions and hydration dependencies. Also, ac susceptibility and small-angle neutron scattering experiments revealed evidence for magnetic phase transitions in a temperature range between 1.5 and 4 K.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1See, for instance, Grim, R. E., Clay Mineralogy (McGraw-Hill, New York, 1968); Crystal Structures of Clay Minerals and their X-Ray Identification, edited by G. W. Brindley and G. Brown (Mineralogical Society, London, 1980); H. van Olphen, An Introduction to Clay Colloid Chemistry (Wiley, New York, 1977).Google Scholar
2Pinnavaia, T. J., Science 220, 365 (1983).CrossRefGoogle Scholar
3Laszlo, P., Science 235, 1473 (1987).CrossRefGoogle Scholar
4Sen, P. N. and Kan, R., Phys. Rev. Lett. 58, 778 (1987).CrossRefGoogle Scholar
5Wong, P., Howard, J., and Lin, J., Phys. Rev. Lett. 57, 637 (1986).CrossRefGoogle Scholar
6Damme, H. V., Levitz, P., and Gatineau, L., in Chemical Reactions in Organic and Inorganic Constrained Systems, edited by Setton, R. (Reidel, Dordrecht, 1985), p. 283.Google Scholar
7Deguchi, H., Morita, N., Moriyasu, Y., Takeda, K., Yamanaka, S., and Amaya, K., J. Phys. Soc. Jpn. 54, 3230 (1985).CrossRefGoogle Scholar
8Takahashi, M., Sato, M., Ishio, S., Ohtsuka, K., Suda, M., and Ono, M., Jpn. J. Appl. Phys. 25, 1348 (1986).CrossRefGoogle Scholar
9York, B. R., Solin, S. A., Wada, N., Raythatha, R., Johnson, I. D., and Pinnavaia, T. J., Solid State Commun. 54, 475 (1985).CrossRefGoogle Scholar
10Alcover, J. F. and Gatineau, L., Clay Miner. 15, 193 (1980).CrossRefGoogle Scholar
11Alcover, J. F. and Gatineau, L., Clay Miner. 15, 25 (1980).CrossRefGoogle Scholar
12Calle, C. de la, Suquet, H., and Pezerat, H., Clay Miner. 20, 221 (1985).CrossRefGoogle Scholar
13Slade, P. G., Stone, P. A., and Radoslovich, E. W., Clays Clay Miner. 33, 51 (1985).CrossRefGoogle Scholar
14Rausell-Colom, J. A., Fernandez, M., Serratosa, J. M., Alcover, J. F., and Gatineau, L., Clay Miner. 15, 37 (1980).CrossRefGoogle Scholar
15Hendricks, S. and Teller, E., J. Chem. Phys. 10, 147 (1942).CrossRefGoogle Scholar
16Walker, G. F., Clays Clay Miner. 4, 101 (1956).Google Scholar
17Safran, S. A., Phys. Rev. Lett. 44, 937 (1980).CrossRefGoogle Scholar
18Suzuki, M., Wada, N., Hines, D., and Whittingham, M. S., Phys. Rev. B 36, 2844 (1987).CrossRefGoogle Scholar
19Olphen, H. van, J. Colloid Sci. 20, 822 (1965).CrossRefGoogle Scholar
20Wada, N. (to be published).Google Scholar
21Ishii, M., Shimanouchi, T., and Nakahira, M., Inorg. Chim. Acta 1, 387 (1967).CrossRefGoogle Scholar
22Fripiat, J. J., in Advanced Techniquesfor Clay Mineral Analysis, edited by Fripiat, J. J. (Elsevier, Amsterdam, 1982), pp. 191210.Google Scholar
23Wada, N. and Kamitakahara, W. A. (to be published).Google Scholar
24Koga, K., Nishihara, H., Suzuki, M., and Wada, N. (to be published).Google Scholar
25Dresselhaus, M. S. and Dresselhaus, G., Adv. Phys. 30, 139 (1981).CrossRefGoogle Scholar