Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-11T10:09:17.025Z Has data issue: false hasContentIssue false

Hydrogen embrittlement of tungsten induced by deuterium plasma: Insights from nanoindentation tests

Published online by Cambridge University Press:  04 September 2018

Xufei Fang*
Affiliation:
Structure and Nano-/Micromechanics of Materials, Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf 40237, Germany
Arkadi Kreter
Affiliation:
Institut für Energie- und Klimaforschung – Plasmaphysik, Partner of the Trilateral Euregio Cluster (TEC), Forschungszentrum Jülich GmbH, Jülich 52425, Germany
Marcin Rasinski
Affiliation:
Institut für Energie- und Klimaforschung – Plasmaphysik, Partner of the Trilateral Euregio Cluster (TEC), Forschungszentrum Jülich GmbH, Jülich 52425, Germany
Christoph Kirchlechner
Affiliation:
Structure and Nano-/Micromechanics of Materials, Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf 40237, Germany
Steffen Brinckmann*
Affiliation:
Structure and Nano-/Micromechanics of Materials, Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf 40237, Germany
Christian Linsmeier
Affiliation:
Institut für Energie- und Klimaforschung – Plasmaphysik, Partner of the Trilateral Euregio Cluster (TEC), Forschungszentrum Jülich GmbH, Jülich 52425, Germany
Gerhard Dehm
Affiliation:
Structure and Nano-/Micromechanics of Materials, Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf 40237, Germany
*
a)Address all correspondence to these authors. e-mail: x.fang@mpie.de
Get access

Abstract

Hydrogen exposure has been found to result in metal embrittlement. In this work, we use nanoindentation to study the mechanical properties of polycrystalline tungsten subjected to deuterium plasma exposure. For the purpose of comparison, nanoindentation tests on exposed and unexposed reference tungsten were carried out. The results exhibit a decrease in the pop-in load and an increase in hardness on the exposed tungsten sample after deuterium exposure. No significant influence of grain orientation on the pop-in load was observed. After a desorption time of td ≥ 168 h, both the pop-in load and hardness exhibit a recovering trend toward the reference state without deuterium exposure. The decrease of pop-in load is explained using the defactant theory, which suggests that the presence of deuterium facilitates the dislocation nucleation. The increase of hardness is discussed based on two possible mechanisms of the defactant theory and hydrogen pinning of dislocations.

Type
Article
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

’t Hoen, M.H.J., Balden, M., Manhard, A., Mayer, M., Elgeti, S., Kleyn, A.W., and Zeijlmans van Emmichoven, P.A.: Surface morphology and deuterium retention of tungsten after low- and high-flux deuterium plasma exposure. Nucl. Fusion 54, 083014 (2014).CrossRefGoogle Scholar
Fan, H., You, Y., Ni, W., Yang, Q., Liu, L., Benstetter, G., Liu, D., and Liu, C.: Surface degeneration of W crystal irradiated with low-energy hydrogen ions. Sci. Rep. 6, 23738 (2016).CrossRefGoogle ScholarPubMed
Pitts, R.A., Carpentier, S., Escourbiac, F., Hirai, T., Komarov, V., Lisgo, S., Kukushkin, A.S., Loarte, A., Merola, M., Sashala Naik, A., Mitteau, R., Sugihara, M., Bazylev, B., and Stangeby, P.C.: A full tungsten divertor for ITER: Physics issues and design status. J. Nucl. Mater. 438, S48 (2013).CrossRefGoogle Scholar
Roth, J., Tsitrone, E., Loarte, A., Loarer, T., Counsell, G., Neu, R., Philipps, V., Brezinsek, S., Lehnen, M., Coad, P., Grisolia, C., Schmid, K., Krieger, K., Kallenbach, A., Lipschultz, B., Doerner, R., Causey, R., Alimov, V., Shu, W., Ogorodnikova, O., Kirschner, A., Federici, G., and Kukushkin, A.: Recent analysis of key plasma wall interactions issues for ITER. J. Nucl. Mater. 390–391, 1 (2009).CrossRefGoogle Scholar
Shu, W.M.: High-dome blisters formed by deuterium-induced local superplasticity. Appl. Phys. Lett. 92, 211904 (2008).CrossRefGoogle Scholar
Alimov, V.K. and Roth, J.: Hydrogen isotope retention in plasma-facing materials: Review of recent experimental results. Phys. Scr. T128, 6 (2007).CrossRefGoogle Scholar
Wampler, W.R. and Doerner, R.P.: The influence of displacement damage on deuterium retention in tungsten exposed to plasma. Nucl. Fusion 49, 115023 (2009).CrossRefGoogle Scholar
Kolasinski, R.D., Cowgill, D.F., Donovan, D.C., Shimada, M., and Wampler, W.R.: Mechanisms of gas precipitation in plasma-exposed tungsten. J. Nucl. Mater. 438, S1019 (2013).CrossRefGoogle Scholar
Kreter, A., Brandt, C., Huber, A., Kraus, S., Möller, S., Reinhart, M., Schweer, B., Sergienko, G., and Unterberg, B.: Linear plasma device PSI-2 for plasma-material interaction studies. Fusion Sci. Technol. 68, 8 (2015).CrossRefGoogle Scholar
Akhmetov, T.D., Davydenko, V.I., Ivanov, A.A., Kreter, A., Mishagin, V.V., Savkin, V.Y., Shulzhenko, G.I., and Unterberg, B.: Note: Arc discharge plasma source with plane segmented LaB6 cathode. Rev. Sci. Instrum. 87, 056106 (2016).CrossRefGoogle ScholarPubMed
Wirtz, M., Bardin, S., Huber, A., Kreter, A., Linke, J., Morgan, T.W., Pintsuk, G., Reinhart, M., Sergienko, G., Steudel, I., De Temmerman, G., and Unterberg, B.: Impact of combined hydrogen plasma and transient heat loads on the performance of tungsten as plasma facing material. Nucl. Fusion 55, 123017 (2015).CrossRefGoogle Scholar
Robertson, I.M., Sofronis, P., Nagao, A., Martin, M.L., Wang, S., Gross, D.W., and Nygren, K.E.: Hydrogen embrittlement understood. Metall. Mater. Trans. B 46, 1085 (2015).CrossRefGoogle Scholar
Pundt, A. and Kirchheim, R.: Hydrogen in metals: Microstructural aspects. Annu. Rev. Mater. Res. 36, 555 (2006).CrossRefGoogle Scholar
Hajilou, T., Deng, Y., Rogne, B.R., Kheradmand, N., and Barnoush, A.: In situ electrochemical microcantilever bending test: A new insight into hydrogen enhanced cracking. Scr. Mater. 132, 17 (2017).CrossRefGoogle Scholar
Deng, Y., Hajilou, T., Wan, D., Kheradmand, N., and Barnoush, A.: In situ micro-cantilever bending test in environmental scanning electron microscope: Real time observation of hydrogen enhanced cracking. Scr. Mater. 127, 19 (2017).CrossRefGoogle Scholar
Yamagiwa, M., Nakamura, Y., Matsunami, N., Ohno, N., Kajita, S., Takagi, M., Tokitani, M., Masuzaki, S., Sagara, A., and Nishimura, K.: In situmeasurement of hydrogen isotope retention using a high heat flux plasma generator with ion beam analysis. Phys. Scr. T145, 014032 (2011).CrossRefGoogle Scholar
Watanabe, T., Kaneko, T., Matsunami, N., Ohno, N., Kajita, S., and Kuwabara, T.: In situ measurement of deuterium retention in W under plasma exposure. J. Nucl. Mater. 463, 1049 (2015).CrossRefGoogle Scholar
Oya, M., Uekita, K., Lee, H.T., Ohtsuka, Y., Ueda, Y., Kurishita, H., Kreter, A., Coenen, J.W., Philipps, V., Brezinsek, S., Litnovsky, A., Sugiyama, K., and Torikai, Y.: Deuterium retention in toughened, fine-grained recrystallized tungsten. J. Nucl. Mater. 438, S1052 (2013).CrossRefGoogle Scholar
Tanabe, T.: Review of hydrogen retention in tungsten. Phys. Scr. T159, 014044 (2014).CrossRefGoogle Scholar
Terentyev, D., Bakaeva, A., Pardoen, T., Favache, A., and Zhurkin, E.E.: Surface hardening induced by high flux plasma in tungsten revealed by nano-indentation. J. Nucl. Mater. 476, 1 (2016).CrossRefGoogle Scholar
Zayachuk, Y., Armstrong, D.E.J., Bystrov, K., Van Boxel, S., Morgan, T., and Roberts, S.G.: Nanoindentation study of the combined effects of crystallography, heat treatment and exposure to high-flux deuterium plasma in tungsten. J. Nucl. Mater. 486, 183 (2017).CrossRefGoogle Scholar
Gerberich, W.W., Nelson, J.C., Lilleodden, E.T., Anderson, P., and Wyrobek, J.T.: Indentation induced dislocation nucleation: The initial yield point. Acta Mater. 44, 3585 (1996).CrossRefGoogle Scholar
A. E521-96: ASTM E521-96 1996 standard practice for neutron radiation damage simulation by charge-particle irradiation. In Annual Book of ASTM Standards (ASTM International Pennsylvania, 1996).Google Scholar
Oliver, W.C. and Pharr, G.M.: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19, 3 (2004).CrossRefGoogle Scholar
Johnson, K.L.: Contact Mechanics (Cambridge University Press, Cambridge, 1985).CrossRefGoogle Scholar
Bahr, D.F., Kramer, D.E., and Gerberich, W.W.: Non-linear deformation mechanism during nanoindentation. Acta Mater. 46, 3605 (1998).CrossRefGoogle Scholar
Vadalakonda, S., Banerjee, R., Puthcode, A., and Mirshams, R.: Comparison of incipient plasticity in bcc and fcc metals studied using nanoindentation. Mater. Sci. Eng., A 426, 208 (2006).CrossRefGoogle Scholar
Roundy, D., Krenn, C.R., Cohen, M.L., and Morris, J.W.: The ideal strength of tungsten. Philos. Mag. A 81, 1725 (2001).CrossRefGoogle Scholar
Barnoush, A., Asgari, M., and Johnsen, R.: Resolving the hydrogen effect on dislocation nucleation and mobility by electrochemical nanoindentation. Scr. Mater. 66, 414 (2012).CrossRefGoogle Scholar
Barnoush, A. and Vehoff, H.: Recent developments in the study of hydrogen embrittlement: Hydrogen effect on dislocation nucleation. Acta Mater. 58, 5274 (2010).CrossRefGoogle Scholar
Tal-Gutelmacher, E., Gemma, R., Volkert, C.A., and Kirchheim, R.: Hydrogen effect on dislocation nucleation in a vanadium (100) single crystal as observed during nanoindentation. Scr. Mater. 63, 1032 (2010).CrossRefGoogle Scholar
Kirchheim, R.: Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation. I. Theoretical background. Acta Mater. 55, 5129 (2007).CrossRefGoogle Scholar
Kirchheim, R.: On the solute-defect interaction in the framework of a defactant concept. Int. J. Mater. Res. 100, 483 (2009).CrossRefGoogle Scholar
Hirth, J.P. and Lothe, J.: Theory of Dislocations, 2nd ed. (Krieger Publishing Company, Florida, 1992). reprint.Google Scholar
Kirchheim, R.: Revisiting hydrogen embrittlement models and hydrogen-induced homogeneous nucleation of dislocations. Scr. Mater. 62, 67 (2010).CrossRefGoogle Scholar
Nix, W.D. and Gao, H.J.: Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids 46, 411 (1998).CrossRefGoogle Scholar
Mecking, H. and Kocks, U.F.: Kinetics of flow and strain-hardening. Acta Metall. 29, 1865 (1981).CrossRefGoogle Scholar
Baldwin, M.J., Doerner, R.P., Wampler, W.R., Nishijima, D., Lynch, T., and Miyamoto, M.: Effect of He on D retention in W exposed to low-energy, high-fluence (D, He, Ar) mixture plasmas. Nucl. Fusion 51, 103021 (2011).CrossRefGoogle Scholar
Zayachuk, Y., Manhard, A., t Hoen, M.H.J., Jacob, W., Zeijlmans van Emmichoven, P.A., and van Oost, G.: Depth profiling of the modification induced by high-flux deuterium plasma in tungsten and tungsten–tantalum alloys. Nucl. Fusion 54, 123013 (2014).CrossRefGoogle Scholar