Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-14T17:41:11.507Z Has data issue: false hasContentIssue false

Hydrogen-induced amorphization and embrittlement resistance in Ti-based in situ composite with bcc-phase in an amorphous matrix

Published online by Cambridge University Press:  03 March 2011

S. Jayalakshmi
Affiliation:
Advanced Metals Research Center, Korea Institute of Science and Technology (KIST), Cheongryang, Seoul 130-650, Korea
J.P. Ahn
Affiliation:
Advanced Analysis Center, Korea Institute of Science & Technology (KIST), Cheongryang, Seoul 130-650, Korea
K.B. Kim
Affiliation:
Advanced Metals Research Center, Korea Institute of Science and Technology (KIST), Cheongryang, Seoul 130-650, Korea
E. Fleury*
Affiliation:
Advanced Metals Research Center, Korea Institute of Science and Technology (KIST), Cheongryang, Seoul 130-650, Korea
*
a) Address all correspondence to this author. e-mail: efleury@kist.re.kr
Get access

Abstract

We report the hydrogenation characteristics and mechanical properties of Ti50Zr25Cu25 in situ composite ribbons, composed of β-Ti crystalline phase dispersed in an amorphous matrix. Upon cathodic charging at room temperature, high hydrogen absorption up to ∼60 at.% (H/M = ∼1.2) is obtained. At such a high concentration, hydrogen-induced amorphization occurs. Mechanical tests conducted on the composite with varying hydrogen concentrations indicate that the Ti50Zr25Cu25 alloy is significantly resistant to hydrogen embrittlement when compared to conventional amorphous alloys. A possible mechanism that would contribute toward hydrogen-induced amorphization and hydrogen embrittlement is discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Inoue, A.: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 (2000).Google Scholar
2Wang, W.H., Dong, C., and Shek, C.H.: Bulk metallic glasses. Mater Sci. Eng., R 44, 45 (2004).CrossRefGoogle Scholar
3Eliaz, N., Fuks, D., and Eliezer, D.: A new model for the diffusion behavior of hydrogen in metallic glasses. Acta Mater. 47, 2981 (1999).Google Scholar
4Guo, X.Q., Louzguine, D.V., Yamaura, S., Ma, L.Q., Sun, W., Hasegawa, M., and Inoue, A.: Hydrogen absorption in Ti-Zr-Ni-Cu amorphous alloy. Mater. Sci. Eng., A 338, 97 (2002).CrossRefGoogle Scholar
5Eliaz, N. and Eliezer, D.: An overview of hydrogen interaction with amorphous alloys. Adv. Perf. Mater. 6, 5 (1999).Google Scholar
6Jayaraj, J., Kim, Y.C., Kim, K.B., Seok, H.K., and Fleury, E.: Corrosion studies on Fe-based amorphous alloys in simulated PEM fuel cell environment. Sci. Tech. Adv. Mater. 6, 282 (2005).Google Scholar
7Yamaura, S., Shimpo, Y., Okouchi, H., Nishida, M., Kajita, O., and Inoue, A.: The effect of additional elements on hydrogen permeation properties of melt spun Ni-Nb-Zr amorphous alloys. Mater. Trans. 45, 330 (2004).Google Scholar
8Shimpo, Y., Yamaura, S., Okouchi, H., Nishida, M., Kajita, O., Kimura, H., and Inoue, A.: Hydrogen permeation characteristics of melt-spun Zr60Al15Co2.5Ni7.5Cu15 glassy alloy membrane. J. Alloys Compd. 372, 197 (2004).CrossRefGoogle Scholar
9Flis, J., Ashok, S., Stoloff, N.S., and Dugrete, D.J.: Hydrogen embrittlement of amorphous alloys based on iron and nickel. Acta Metal. 35, 2071 (1987).Google Scholar
10Ding, W., Wang, M.H., Haiao, C.M., Xu, Y., and Tian, Z.Z.: Crystallization, hydrogen permeation and hydrogen embrittlement of amorphous NiP alloy. Scripta Metall. 21, 1685 (1987).CrossRefGoogle Scholar
11Yamaura, S., Hasegawa, M., Kimura, H., and Inoue, A.: Effects of hydrogen on the mechanical properties of Ti50Ni25Cu25 metallic glass. Mater. Trans. 43, 2543 (2002).Google Scholar
12Yamaura, S., Shimpo, Y., Okouchi, H., Nishida, M., Kajita, O., Kimura, H., and Inoue, A.: Hydrogen permeation characteristics of melt-spun Ni-Nb-Zr amorphous alloy membranes. Mater. Trans. 44, 1885 (2003).CrossRefGoogle Scholar
13Jayalakshmi, S., Park, S.O., Kim, K.B., Fleury, E., and Kim, D.H.: Studies on hydrogen embrittlement in Zr- and Ni- based amorphous alloys. Mater. Sci. Eng., A (in press).Google Scholar
14Lee, Y.S. and Stevenson, D.A.: Hydrogen permeation in amorphous Cu-Ti and Pd-Si alloys. J. Non-Cryst. Solids 72, 249 (1985).CrossRefGoogle Scholar
15Kim, J.J. and Stevenson, D.A.: Hydrogen permeation studies of amorphous and crystallized Ni-Ti alloys. J. Non-Cryst. Solids 101, 187 (1988).CrossRefGoogle Scholar
16Hashi, K., Ishikawa, K., Matsuda, T., and Aoki, K.: Hydrogen permeation characteristics of multi-phase Ni-Ti-Nb alloys. J. Alloys Compd. 368, 215 (2004).CrossRefGoogle Scholar
17Massalski, T.B., Woychik, C.G., and Dutkiewicz, J.: Solidification structures in rapidly quenched Cu-Ti-Zr alloys. Metall. Trans. A 19, 1853 (1988).CrossRefGoogle Scholar
18Woychik, C.G. and Massalski, T.B.: Phase diagram relationships in the system Cu-Ti-Zr. Z. Metallkd. 79, 249 (1988).Google Scholar
19Amiya, K., Nishiyama, N., Inoue, A., and Masumoto, T.: Mechanical strength and thermal stability of Ti-based amorphous alloys with large glass-forming ability. Mater. Sci. Eng., A 179/180, 692 (1994).Google Scholar
20Inoue, A., Zhang, W., Zhang, T., and Kurosaka, K.: High-strength Cu-based bulk glassy alloys in Cu-Zr-Ti and Cu-Hf-Ti ternary systems. Acta Mater. 49, 2645 (2001).CrossRefGoogle Scholar
21Concustell, A., Zielinska, M., Revesz, A., Varga, L.K., Surinach, S., and Baro, M.D.: Thermal characterization of Cu60ZrxTi40-x metallic glasses (x = 15,20,22,25,30). Intermetallics 12, 1063 (2004).CrossRefGoogle Scholar
22Men, H., Pang, S.J., and Zhang, T.: Glass-forming ability and mechanical properties of Cu50Zr50-xTix alloys. Mater. Sci. Eng., A 408, 326 (2005).CrossRefGoogle Scholar
23Eliaz, N., Eliezer, D., Abramov, E., Zander, D., and Koester, U.: Hydrogen evolution from Zr-based amorphous and qusicrystalline alloys. J. Alloys Compd. 305, 272 (2000).Google Scholar
24Luborsky, F.E. and Walter, J.L.: Stability of amorphous metallic alloys. J. Appl. Phys. 47, 3648 (1976).CrossRefGoogle Scholar
25Jayalakshmi, S., Kim, K.B., and Fleury, E.: Effect of hydrogenation on the structural, thermal and mechanical properties of Zr50-Ni27-Nb18-Co5 amorphous alloy. J. Alloys Compd. 417, 195 (2005).Google Scholar
26Ashok, S., Stoloff, N.S., Glicksman, M.E., and Slavin, T.: Liquid metal and hydrogen embrittlement of amorphous alloys. Scripta Metall. 15, 331 (1981).Google Scholar
27Munoz-Morris, M.A., Surinach, S., Varga, L.K., Baro, M.D., and Morris, D.G.: The influence of composition and low temperature annealing on hardness and ductility of rapidly solidified Al–Ni–Ce alloys. Scripta Mater. 47, 31 (2002).CrossRefGoogle Scholar
28Li, X.G., Otahara, T., Takahashi, S., Shoji, T., Kimura, H.M., and Inoue, A.: Hydrogen absorption and corresponding changes in structure and thermal stability of Zr60Al10Ni30 amorphous alloy. J. Alloys Compd. 297, 303 (2000).CrossRefGoogle Scholar
29Samwer, K. and Johnson, W.L.: Structure of glassy early-transition metal–late-transition metal hydrides. Phys. Rev. B 28, 2907 (1983).CrossRefGoogle Scholar
30Harris, J.H., Curtin, W.A., and Tenhover, M.A.: Universal features of hydrogen absorption in amorphous transition-metal alloys. Phys. Rev. B 36, 5784 (1987).CrossRefGoogle ScholarPubMed
31Mizubayashi, H., Shibasaki, M., and Murayama, S.: Local strain around hydrogen in amorphous Cu50Zr50 and Cu50Ti50. Acta Mater. 47, 3331 (1999).CrossRefGoogle Scholar
32Aoki, K., Yanagitani, T., Li, X.G., and Masumoto, T.: Amorphization of RFe2 laves phases by hydrogen absorption. Mater. Sci. Eng., A 97, 35 (1988).Google Scholar
33Sih, D.S. and Birnbaum, H.K.: Evidence of FCC titanium hydride formation in β-titanium alloys. Scripta Metall. 20, 1261 (1986).CrossRefGoogle Scholar
34Schroeder, H.W. and Koester, U.: Hydrogen embrittlement of metallic glass. J. Non-Cryst. Solids 56, 213 (1983).CrossRefGoogle Scholar
35Kawashima, A., Hashimoto, K., and Masumoto, T.: Fractographic study of amorphous Fe-base alloys embrittled by hydrogen and heat-treatment. Scripta Metall. 14, 41 (1980).Google Scholar
36Eliaz, N. and Eliezer, D.: Hydrogen effects on an amorphous Fe-Si-B alloy. Metall. Mater. Trans. 31A, 2517 (2000).CrossRefGoogle Scholar
37Cha, P.R., Kim, Y.C., Seok, H.K., Kii, K.B., Fleury, E., and Han, S.H.: Hydrogen induced crystallization of an amorphous metal (2006, in press).Google Scholar
38Yeh, X.L., Samwer, K., and Johnson, W.L.: Formation of an amorphous metallic hydride by reaction of hydrogen with crystalline intermetallic compounds—A new method of synthesizing metallic glasses. Appl. Phys. Lett. 42, 242 (1983).Google Scholar
39Kim, Y.G. and Lee, J.Y.: The mechanism of hydrogen-induced amorphization in intermetallic compounds. J. Alloys Compd. 187, 1 (1992).Google Scholar
40Ishikawa, K., Ogasawara, N., and Aoki, K.: Hydrogen-induced amorphization in the C14 Laves compound NdMn2. Philos. Mag. Lett. 84, 207 (2004).Google Scholar
41Mori, K., Aoki, K., and Masumoto, T.: Hydrogen-induced amorphization in titanium-based intermetallic compounds with the DO19 structure. J. Alloys Compd. 231, 29 (1995).CrossRefGoogle Scholar
42Aoki, K. and Masumoto, T.: Hydrogen-induced amorphization in intermetallics. J. Alloys Compd. 231, 20 (1995).Google Scholar
43Katagiri, M. and Onodera, H.: Hydrogen-induced phase transformation. J. Phase Equilib. 22, 418 (2001).Google Scholar
44Katagiri, M. and Onodera, H.: Atomic-size effect in hydrogen-induced amorphization. Mol. Phys. 102, 1001 (2004).CrossRefGoogle Scholar
45Tal-Gutelmacher, E. and Eliezer, D.: Hydrogen cracking in titanium-based alloys. J. Alloys Compd. 404–406, 621 (2005).Google Scholar
46Cullity, B.D. and Stock, S.R.: Elements of X-Ray Diffraction, 3rd ed. (Prentice Hall, New Jersey, 2001), p. 50.Google Scholar
47Yamaura, S., Sakurai, M., Hasegawa, M., Wakoh, K., Shimpo, Y., Nishida, M., Kimura, H., Matsubara, E., and Inoue, A.: Hydrogen permeation and structural features of melt-spun Ni-Nb-Zr alloys. Acta Mater. 53, 3703 (2005).Google Scholar