Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T13:48:16.443Z Has data issue: false hasContentIssue false

Hydrolytic stability and biocompatibility on smooth muscle cells of polyethylene glycol–polycaprolactone-based polyurethanes

Published online by Cambridge University Press:  12 November 2020

Maria Morales-Gonzalez
Affiliation:
Process Design and Management, Faculty of Engineering, Universidad de La Sabana, Chía140013, Colombia Energy, Materials and Environment Group, Faculty of Engineering, Universidad de La Sabana, Chía140013, Colombia
Said Arévalo-Alquichire
Affiliation:
Energy, Materials and Environment Group, Faculty of Engineering, Universidad de La Sabana, Chía140013, Colombia
Luis E. Diaz
Affiliation:
Bioprospecting Research Group, Faculty of Engineering, Universidad de La Sabana, Chía140013, Colombia
Juan Ángel Sans
Affiliation:
Instituto de Diseño para la Fabricación y Producción Automatizada, MALTA Consolider, Universitat Politècnica de València, Valencia46022, Spain
Guillermo Vilariño-Feltrer
Affiliation:
Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Valencia46022, Spain
José A. Gómez-Tejedor
Affiliation:
Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Valencia46022, Spain Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valencia46022, Spain
Manuel F. Valero*
Affiliation:
Energy, Materials and Environment Group, Faculty of Engineering, Universidad de La Sabana, Chía140013, Colombia
*
a)Address all correspondence to this author. e-mail: manuelvv@unisabana.edu.co
Get access

Abstract

Interactions between smooth muscle cells (SMCs) and biomaterials must not result in phenotype changes as this may generate uncontrolled multiplication processes and occlusions in vascular grafts. The aim of this study was to relate the hydrolytic stability and biocompatibility of polyurethanes (PUs) on SMCs. A higher polycaprolactone (PCL) concentration was found to improve the hydrolytic stability of the material and the adhesion of SMCs. A material with 5% polyethylene glycol, 90% PCL, and 5% pentaerythritol presented high cell viability and adhesion, suggesting a contractile phenotype in SMCs depending on the morphology. Nevertheless, all PUs retained their elastic modulus over 120 days, similar to the collagen of native arteries (~10 MPa). Furthermore, aortic SMCs did not present toxicity (viability over 80%) and demonstrated adherence without any abnormal cell multiplication processes, which is ideal for the function to be fulfiled in situ in the vascular grafts.

Type
Article
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Wu, J., Hu, C., Tang, Z., Yu, Q., Liu, X., and Chen, H.: Tissue-engineered vascular grafts: Balance of the four major requirements. Colloid Interface Sci. Commun. 23, 34 (2018).CrossRefGoogle Scholar
Benrashid, E., McCoy, C.C., Youngwirth, L.M., Kim, J., Manson, R.J., Otto, J.C., and Lawson, J.H.: Tissue engineered vascular grafts: Origins, development, and current strategies for clinical application. Methods 99, 13 (2016).CrossRefGoogle ScholarPubMed
Xie, F., Zhang, T., Bryant, P., Kurusingal, V., Colwell, J.M., and Laycock, B.: Degradation and stabilization of polyurethane elastomers. Prog. Polym. Sci. 90, 211 (2019).CrossRefGoogle Scholar
Lyu, S. and Untereker, D.: Degradability of polymers for implantable biomedical devices. Int. J. Mol. Sci. 10, 4033 (2009).CrossRefGoogle ScholarPubMed
Chen, H. and Kassab, G.S.: Microstructure-based biomechanics of coronary arteries in health and disease. J. Biomech. 49, 2548 (2016).CrossRefGoogle ScholarPubMed
Agrawal, A., Lee, B.H., Irvine, S.A., An, J., Bhuthalingam, R., Singh, V., Low, K.Y., Chua, C.K., and Venkatraman, S.S.: Smooth muscle cell alignment and phenotype control by melt spun polycaprolactone fibers for seeding of tissue engineered blood vessels. Int. J. Biomater., 2015, 434876 (2015).CrossRefGoogle ScholarPubMed
Mi, H.-Y., Jing, X., Hagerty, B.S., Chen, G., Huang, A., and Turng, L.-S.: Post-crosslinkable biodegradable thermoplastic polyurethanes: Synthesis, and thermal, mechanical, and degradation properties. Mater. Des. 127, 106 (2017).CrossRefGoogle Scholar
Adipurnama, I., Yang, M.C., Ciach, T., and Butruk-Raszeja, B.: Surface modification and endothelialization of polyurethane for vascular tissue engineering applications: A review. Biomater. Sci. 5, 22 (2017).CrossRefGoogle Scholar
Krsko, P. and Libera, M.: Hydrogels poly (ethylene glycol), or PEG, is used extensively in biomedical device. Mater. Today 8, 36 (2005).CrossRefGoogle Scholar
Horakova, J., Mikes, P., Saman, A., Jencova, V., Klapstova, A., Svarcova, T., Ackermann, M., Novotny, V., Suchy, T., and Lukas, D.: The effect of ethylene oxide sterilization on electrospun vascular grafts made from biodegradable polyesters. Mater. Sci. Eng. C 92, 132 (2018).CrossRefGoogle ScholarPubMed
Jing, X., Mi, H.Y., Salick, M.R., Cordie, T., McNulty, J., Peng, X.F., and Turng, L.S.: In vitro evaluations of electrospun nanofiber scaffolds composed of poly(ε-caprolactone) and polyethylenimine. J. Mater. Res. 30, 1808 (2015).CrossRefGoogle Scholar
Peng, Z., Zhou, P., Zhang, F., and Peng, X.: Preparation and properties of polyurethane hydrogels based on hexamethylene diisocyanate/polycaprolactone-polyethylene glycol. J. Macromol. Sci., Part B: Phys. 57, 187 (2018).CrossRefGoogle Scholar
Tiwari, A.P., Joshi, M.K., Lee, J., Maharjan, B., Ko, S.W., Park, C.H., and Kim, C.S.: Heterogeneous electrospun polycaprolactone/polyethylene glycol membranes with improved wettability, biocompatibility, and mineralization. Colloids Surf., A 520, 105 (2017).CrossRefGoogle Scholar
Kupka, V., Vojtova, L., Fohlerova, Z., and Jancar, J.: Solvent free synthesis and structural evaluation of polyurethane films based on poly(ethylene glycol) and poly(caprolactone). Express Polym. Lett. 10, 479 (2016).CrossRefGoogle Scholar
Zhou, C., Zhou, X., and Su, X.: Noncytotoxic polycaprolactone-polyethyleneglycol-ɛ-poly(l-lysine) triblock copolymer synthesized and self-assembled as an antibacterial drug carrier. RSC Adv. 7, 39718 (2017).CrossRefGoogle Scholar
Niu, Y., Chen, K.C., He, T., Yu, W., Huang, S., and Xu, K.: Scaffolds from block polyurethanes based on poly(ε-caprolactone) (PCL) and poly(ethylene glycol) (PEG) for peripheral nerve regeneration. Biomaterials 35, 4266 (2014).10.1016/j.biomaterials.2014.02.013CrossRefGoogle ScholarPubMed
da Cunha, F.O.V., Melo, D.H.R., Veronese, V.B., and Forte, M.M.C.: Study of castor oil polyurethane – poly(methyl methacrylate) semi-interpenetrating polymer network (SIPN) reaction parameters using a 23 factorial experimental design. Mater. Res. 7, 539 (2004).CrossRefGoogle Scholar
Kotula, A.P., Snyder, C.R., and Migler, K.B.: Determining conformational order and crystallinity in polycaprolactone via Raman spectroscopy. Polymer 117, 1 (2017).CrossRefGoogle ScholarPubMed
Baranowska-Korczyc, A., Warowicka, A., Jasiurkowska-Delaporte, M., Grześkowiak, B., Jarek, M., Maciejewska, B.M., Jurga-Stopa, J., and Jurga, S.: Antimicrobial electrospun poly(ε-caprolactone) scaffolds for gingival fibroblast growth. RSC Adv. 6, 19647 (2016).CrossRefGoogle Scholar
Wesełucha-Birczyńska, A., Świȩtek, M., Sołtysiak, E., Galiński, P., Płachta, Ł., Piekara, K., and Błazewicz, M.: Raman spectroscopy and the material study of nanocomposite membranes from poly(ε-caprolactone) with biocompatibility testing in osteoblast-like cells. Analyst 140(7), 2311 (2015).CrossRefGoogle ScholarPubMed
Arévalo-Alquichire, S., Morales-Gonzalez, M., Navas-Gómez, K., Diaz, L.E., Gómez-Tejedor, J.A., Serrano, M.A., and Valero, M.F.: Influence of polyol/crosslinker blend composition on phase separation and thermo-mechanical properties of polyurethane thin films. Polymers 12, 666 (2020).CrossRefGoogle ScholarPubMed
França de Sá, S., Ferreira, J.L., Matos, A.S., Macedo, R., and Ramos, A.M.: A new insight into polyurethane foam deterioration – the use of Raman microscopy for the evaluation of long-term storage conditions. J. Raman Spectrosc. 47, 1494 (2016).CrossRefGoogle Scholar
Chung, Y.-C., Cho, T.K., and Chun, B.C.: Flexible cross-linking by both pentaerythritol and polyethyleneglycol spacer and its impact on the mechanical properties and the shape memory effects of polyurethane. J. Appl. Polym. Sci. 112, 2800 (2009).CrossRefGoogle Scholar
Chen, L., Yan, C., and Zheng, Z.: Functional polymer surfaces for controlling cell behaviors. Mater. Today 21, 38 (2018).CrossRefGoogle Scholar
Yuan, Y., and Lee, T.R.: Bracco G., Holst B. Surf. Sci. Tech. (Springer, Berlin, Heidelberg, 2013), pp. 334.CrossRefGoogle Scholar
Asadpour, S., Ai, J., Davoudi, P., Ghorbani, M., Jalali Monfared, M., and Ghanbari, H.: In vitro physical and biological characterization of biodegradable elastic polyurethane containing ferulic acid for small-caliber vascular grafts. Biomed. Mater. 13, 035007 (2018).CrossRefGoogle ScholarPubMed
Liu, X., Xia, Y., Liu, L., Zhang, D., and Hou, Z.: Synthesis of a novel biomedical poly(ester urethane) based on aliphatic uniform-size diisocyanate and the blood compatibility of PEG-grafted surfaces. J. Biomater. Appl. 32, 1329 (2018).CrossRefGoogle ScholarPubMed
Hou, Z., Xu, J., Teng, J., Jia, Q., and Wang, X.: Facile preparation of medical segmented poly(ester-urethane) containing uniformly sized hard segments and phosphorylcholine groups for improved hemocompatibility. Mater. Sci. Eng. C 109, 110571 (2020).CrossRefGoogle ScholarPubMed
Huxley, V. H. and Kemp, S. S.: Sex-Specific Characteristics of the Microcirculation (2018).CrossRefGoogle Scholar
Blit, P.H., Battiston, K.G., Yang, M., Santerre, J.P., and Woodhouse, K.A.: Electrospun elastin-like polypeptide enriched polyurethanes and their interactions with vascular smooth muscle cells. Acta Biomater. 8, 2493 (2012).CrossRefGoogle ScholarPubMed
Wolf, F., Vogt, F., Schmitz-Rode, T., Jockenhoevel, S., and Mela, P.: Bioengineered vascular constructs as living models for in vitro cardiovascular research. Drug Discovery Today 21, 1446 (2016).CrossRefGoogle ScholarPubMed
Tijore, A., Behr, J.M., Irvine, S.A., Baisane, V., and Venkatraman, S.: Bioprinted gelatin hydrogel platform promotes smooth muscle cell contractile phenotype maintenance. Biomed. Microdevices 20, 32 (2018).CrossRefGoogle ScholarPubMed
Chang, H.-I. and Wang, Y.: Cell response to surface and architecture of tissue engineering scaffolds. Regen. Med. Tissue Eng. – Cells Biomater. (2012), pp. 569588.Google Scholar
Guan, J., Sacks, M.S., Beckman, E.J., and Wagner, W.R.: Biodegradable poly(ether ester urethane)urea elastomers based on poly(ether ester) triblock copolymers and putrescine: Synthesis, characterization and cytocompatibility. Biomaterials 25, 85 (2004).CrossRefGoogle ScholarPubMed
Le, X., Eddy, G., Poinern, J., Ali, N., Berry, C.M., and Fawcett, D.: Engineering a biocompatible scaffold with either micrometre or nanometre scale surface topography for promoting protein adsorption and cellular response. Int. J. Biomater., 2013, 782549 (2013).CrossRefGoogle ScholarPubMed
Zehnder, T., Freund, T., Demir, M., Detsch, R., and Boccaccini, A.R.: Fabrication of cell-loaded two-phase 3D constructs for tissue engineering. Materials 9, 887 (2016).CrossRefGoogle ScholarPubMed
Hoque, M.E., San, W.Y., Wei, F., Li, S., Huang, M.-H., Vert, M., and Hutmacher, D.W.: Processing of polycaprolactone and polycaprolactone-based copolymers into 3D scaffolds, and their cellular responses. Tissue Eng., Part A 15, 3013 (2009).CrossRefGoogle ScholarPubMed
Uscátegui, Y.L., Díaz, L.E., Gómez-Tejedor, J.A., Vallés-Lluch, A., Vilariño-Feltrer, G., Serrano, M.A., and Valero, M.F.: Candidate polyurethanes based on castor oil (ricinus communis), with polycaprolactone diol and chitosan additions, for use in biomedical applications. Molecules 24, 237 (2019).CrossRefGoogle Scholar
Uscátegui, Y.L., Arévalo-Alquichire, S.J., Gómez-Tejedor, J.A., Vallés-Lluch, A., Díaz, L.E., and Valero, M.F.: Polyurethane-based bioadhesive synthesized from polyols derived from castor oil (Ricinus communis) and low concentration of chitosan. J. Mater. Res. 32, 3699 (2017).CrossRefGoogle Scholar