Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-30T22:39:50.649Z Has data issue: false hasContentIssue false

Hydrothermal crystallization kinetics of m-ZrO2 and t-ZrO2

Published online by Cambridge University Press:  31 January 2011

Raymond P. Denkewicz Jr.
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
Kevor S. TenHuisen
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
James H. Adair
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
Get access

Abstract

The isothermal nucleation and crystallization kinetics of hydrothermally prepared monoclinic and tetragonal ZrO2 have been determined at various pH conditions. It is shown that monoclinic ZrO2 precipitates at low pH whereas at high pH tetragonal ZrO2 crystallizes from an amorphous zirconium (hydrous) oxide, Zr(OH)xOy, precursor. At intermediate pH conditions mixtures of the polymorphs are formed suggestive of kinetically competing particle formation mechanisms. The data are explained by the proposed existence of three controlling regimes for the formation of crystalline ZrO2: dissolution/precipitation at low pH, a solubility controlled regime at intermediate pH values, and a gel structure controlled regime at high pH. Apparent activation energies for the nucleation and crystallization of monoclinic and tetragonal ZrO2 formed under hydrothermal conditions are presented.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Garvie, R. C., Hannink, R. H., and Pascoe, R.T., Nature 258, 703 (1975).CrossRefGoogle Scholar
2Srinivasan, R., Harris, M. B., Simpson, S. F., De Angelis, R. J., and Davis, B. H., J. Mater. Res. 3, 787 (1988).CrossRefGoogle Scholar
3Nishizawa, H., Yamasaki, N., Matsuoka, K., and Mitsushio, H., J. Am. Ceram. Soc. 65 (7), 343 (1982).CrossRefGoogle Scholar
4Benedetti, A., Fagherazzi, G., and Pinna, F., J. Am. Ceram. Soc. 72 (3), 467 (1989).Google Scholar
5Ogihara, T., Mizutani, N., and Kato, M., J. Am. Ceram. Soc. 72 (3), 421 (1989).CrossRefGoogle Scholar
6Nishizawa, H., Tani, T., and Matsuoka, K., J. Mater. Sci. 19, 2921 (1984).Google Scholar
7Jada, S. S. and Peletis, N. G., J. Mater. Sci. Lett. 8, 243 (1989).CrossRefGoogle Scholar
8Adair, J. H., Denkewicz, R. P., Arriagada, F. J., and Osseo-Asare, K., Ceram. Trans., Ceramic Powder Science 1, 135145 (1988).Google Scholar
9Tani, E., Yoshimura, M., and Somiya, S., J. Am. Ceram. Soc. 64 (12), C181 (1981).CrossRefGoogle Scholar
10Saricimen, H., Powd. Tech. 27, 23 (1980).CrossRefGoogle Scholar
11Morgan, P. E. D., J. Am. Ceram. Soc. 67 (10), C204 (1984).Google Scholar
12Nakamura, K., Hirano, S., and Somiya, S., Am. Ceram. Soc. Bull. 56 (5), 513 (1977).Google Scholar
13Bleier, A. and Cannon, R. M., Better Ceramics Through Chemistry II, edited by Brinker, C. J., Clark, D. E., and Ulrich, D. R. (Materials Research Society, Pittsburgh, PA, 1986), Vol. 72, pp. 7178.Google Scholar
14Tani, E., Yoshimura, M., and Somiya, S., J. Am. Ceram. Soc. 66 (1), 11 (1983).Google Scholar
15Davis, B.H., J. Am. Ceram. Soc. 67 (8), C168 (1984).Google Scholar
16Srinivasan, R., De Angelis, R., and Davis, B. H., J. Mater. Res. 1, 583 (1986).CrossRefGoogle Scholar
17Somiya, S., Yoshimura, M., Nakai, Z., Hishinuma, K., and Kumaki, T., Advances in Ceramics, Vol. 21: Ceramic Powder Science, 43 (1987).Google Scholar
18Ruh, R. and Rockett, T. J., J. Am. Ceram. Soc. 53 (6), 360 (1970).CrossRefGoogle Scholar
19Stambaugh, E. P., Adair, J. H., Sekercioglu, I., and Wills, R. R., U.S. Patent No. 4619817, assigned to Battelle Memorial Institute (1986).Google Scholar
20Tseng, T. Y., Lin, C. C., and Liaw, J.T., J. Mater. Sci. 22, 965 (1987).Google Scholar
21Mitsuhashi, T., Ichihara, M., and Tatsuke, U., J. Am. Ceram. Soc. 57 (2), 97 (1974).CrossRefGoogle Scholar
22Clearfield, A., Inorg. Chem. 3 (1), 146 (1964).Google Scholar
23Katz, G., J. Am. Ceram. Soc. 54 (10), 531 (1971).CrossRefGoogle Scholar
24Komissarova, L.N., Simanov, Y. P., and Vladimirova, Z.A., Russ. J. of Inorg. Chem. 5 (7), 687 (1960).Google Scholar
25Mazdiyasni, S., Lynch, C. T., and Smith, J.S., J. Am. Ceram. Soc. 49 (5), 286 (1966).Google Scholar
26Clarke, D. R. and Adar, F., in Advances in Materials Characterization, edited by Rossington, D. R., Condrate, R. A., and Snyder, R. L. (Plenum Publishing Corporation, 1983), Vol. 15, pp. 199214.CrossRefGoogle Scholar
27Perry, C. H., Liu, D.W., and Ingel, R. P., J. Am. Ceram. Soc. 68 (8), C184 (1985).CrossRefGoogle Scholar
28Phillippi, C. M. and Mazdiyasni, K. S., J. Am. Ceram. Soc. 54 (5), 254 (1971).CrossRefGoogle Scholar
29Kermides, V. G. and White, W. B., J. Am. Ceram. Soc. 57 (1), 22 (1974).CrossRefGoogle Scholar
30White, W. B., Mater. Res. Bull. II (3), 381 (1967).CrossRefGoogle Scholar
31Hsu, A. C.T., AIChE J. 17, 1311 (1971).CrossRefGoogle Scholar
32Culfaz, A. and Sand, L.B., Adv. Chem. Ser. 121, 140 (1973).CrossRefGoogle Scholar
33Bell, A. and Matijević, E., J. Inorg. Nucl. Chem. 37, 907 (1975).CrossRefGoogle Scholar
34Fryer, J. R., Hutchinson, J. L., and Paterson, R., J. Colloid Interface Sci. 34, 238 (1970).CrossRefGoogle Scholar
35Clearfield, A., Rev. Pure Appl. Chem. 14, 91 (1964).Google Scholar
36Livage, J., Doi, K., and Mazieres, C., J. Am. Ceram. Soc. 51 (6), 349 (1968).Google Scholar
37Gimblett, F.G.R., Rahman, A.A., and Sing, K.S.W., J. Colloid Interface Sci. 84 (2), 337 (1981).CrossRefGoogle Scholar
38Yoldas, B.E., J. Am. Ceram. Soc. 65, 387 (1982).CrossRefGoogle Scholar
39Walter, G. M., Acta Crystallogr. 17 (6), 763 (1964).Google Scholar
40Whitney, E.D., J. Am. Ceram. Soc. 53 (12), 697 (1970).CrossRefGoogle Scholar
41Toraya, H., Yoshimura, M., and Somiya, S., J. Am. Ceram. Soc. 67, C119 (1984).CrossRefGoogle Scholar