Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-28T00:54:48.188Z Has data issue: false hasContentIssue false

Ice-templating, freeze casting: Beyond materials processing

Published online by Cambridge University Press:  21 May 2013

Sylvain Deville*
Affiliation:
Laboratoire de Synthèse et Fonctionnalisation des Céramiques, BP20224, 84306 Cavaillon, France
*
a)Address all correspondence to this author. e-mail: sylvain.deville@saint-gobain.com
Get access

Abstract

Ice templating is able to do much more than macroporous, cellular materials. The underlying phenomenon—the freezing of colloids—is ubiquitous, at a unique intersection of a variety of fields and domains, from materials science to physics, chemistry, biology, food engineering, and mathematics. In this review, I walk through the seemingly divergent domains in which the occurrence of freezing colloids can benefit from the work on ice templating, or which may provide additional understanding or inspiration for further development in materials science. This review does not intend to be extensive, but rather to illustrate the richness of this phenomenon and the obvious benefits of a pluridisciplinary approach for us as materials scientists, and for other scientists working in areas well outside the realms of materials science.

Type
Review Article
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Deville, S.: Freeze-casting of porous ceramics: A review of current achievements and issues. Adv. Eng. Mater. 10, 155169 (2008).CrossRefGoogle Scholar
Lottermoser, A.: Über das Ausfrieren von Hydrosolen. Berichte der deutschen chemischen. Gesellschaft 41, 39763979 (1908).Google Scholar
Mahler, W. and Bechtold, M.F.: Freeze-formed silica fibres. Nature 285, 2728 (1980).CrossRefGoogle Scholar
Tong, H., Noda, I., and Gryte, C.C.: Formation of anisotropic ice-agar composites by directional freezing. Colloid Polym. Sci. 262, 589595 (1984).CrossRefGoogle Scholar
Fukasawa, T., Ando, M., Ohji, T., and Kanzaki, S.: Synthesis of porous ceramics with complex pore structure by freeze-dry processing. J. Am. Ceram. Soc. 84, 230232 (2001).CrossRefGoogle Scholar
Bartels-Rausch, T., Bergeron, V., Cartwright, J.H.E., Escribano, R., Finney, J.L., Grothe, H., Gutiérrez, P.J., Haapala, J., Kuhs, W.F., Pettersson, J.B.C., Price, S.D., Sainz-Díaz, C.I., Stokes, D.J., Strazzulla, G., Thomson, E.S., Trinks, H., and Uras-Aytemiz, N.: Ice structures, patterns, and processes: A view across the ice-fields. Rev. Modern Phys. 84, 885944 (2012).CrossRefGoogle Scholar
Gutiérrez, M.C., Ferrer, M.L., and del Monte, F.: Ice-templated materials: Sophisticated structures exhibiting enhanced functionalities obtained after unidirectional freezing and ice-segregation-induced self-assembly. Chem. Mater. 20, 634648 (2008).CrossRefGoogle Scholar
Deville, S.: Freeze-casting of porous biomaterials: Structure, properties and opportunities. Materials 3, 19131927 (2010).CrossRefGoogle Scholar
Wegst, U.G.K., Schecter, M., Donius, A.E., and Hunger, P.M.: Biomaterials by freeze casting. Philos. Trans. R. Soc. London, Ser. A 368, 20992121 (2010).Google ScholarPubMed
Li, W.L., Lu, K., and Walz, J.Y.: Freeze casting of porous materials: Review of critical factors in microstructure evolution. Inter. Mater. Rev. 57, 3760 (2012).CrossRefGoogle Scholar
Deville, S., Saiz, E., and Tomsia, A.P.: Ice-templated porous alumina structures. Acta Mater. 55, 19651974 (2007).CrossRefGoogle Scholar
Araki, K. and Halloran, J.W.: New freeze-casting technique for ceramics with sublimable vehicles. J. Am. Ceram. Soc. 87, 18591863 (2004).CrossRefGoogle Scholar
Macchetta, A., Turner, I.G., and Bowen, C.R.: Fabrication of HA/TCP scaffolds with a graded and porous structure using a camphene-based freeze-casting method. Acta Biomater. 5, 13191327 (2009).CrossRefGoogle ScholarPubMed
Gutiérrez, M.C., Ferrer, M.L., Mateo, C.R., and del Monte, F.: Freeze-drying of aqueous solutions of deep eutectic solvents: A suitable approach to deep eutectic suspensions of self-assembled structures. Langmuir 25, 55095515 (2009).CrossRefGoogle ScholarPubMed
Wu, X., Liu, Y., Li, X., Wen, P., Zhang, Y., Long, Y., Wang, X., Guo, Y., Xing, F., and Gao, J.: Preparation of aligned porous gelatin scaffolds by unidirectional freeze-drying method. Acta Biomater. 6, 11671177 (2010).CrossRefGoogle ScholarPubMed
Soltmann, U.: Freeze gelation: A new option for the production of biological ceramic composites (biocers). Mater. Lett. 57, 28612865 (2003).CrossRefGoogle Scholar
Yue, J., Dong, B., and Wang, H.: Porous Si3N4 fabricated by phase separation method using benzoic acid as pore-forming agent. J. Am. Ceram. Soc. 94, 19891991 (2011).CrossRefGoogle Scholar
Estevez, L., Kelarakis, A., Gong, Q., Da’as, E.H., and Giannelis, E.P.: Multifunctional graphene/platinum/nafion hybrids via ice templating. J. Am. Chem. Soc. 133, 61226125 (2011).CrossRefGoogle ScholarPubMed
Zhang, X., Li, C., and Luo, Y.: Aligned/unaligned conducting polymer cryogels with three-dimensional macroporous architectures from ice-segregation-induced self-assembly of PEDOT-PSS. Langmuir 27, 19151923 (2011).CrossRefGoogle ScholarPubMed
He, Z., Liu, J., Qiao, Y., Li, C.M., and Tan, T.T.Y.: Architecture engineering of hierarchically porous chitosan/vacuum-stripped graphene scaffold as bioanode for high performance microbial fuel cell. Nano Lett. 12, 47384741 (2012).CrossRefGoogle ScholarPubMed
Hamamoto, K., Fukushima, M., Mamiya, M., Yoshizawa, Y., Akimoto, J., Suzuki, T., and Fujishiro, Y.: Morphology control and electrochemical properties of LiFePO4/C composite cathode for lithium ion batteries. Solid State Ionics 225, 560563 (2012).CrossRefGoogle Scholar
Kao, J.C.T. and Golovin, A.A.: Particle capture in binary solidification. J. Fluid Mech. 625, 299 (2009).CrossRefGoogle Scholar
Asthana, R. and Tewari, S.N.: Review the engulfment of foreign particles by a freezing interface. J. Mater. Sci. 28, 54145425 (1993).CrossRefGoogle Scholar
Rempel, A.W. and Worster, M.G.: The interaction between a particle and an advancing solidification front. J. Crystal Growth 205, 427440 (1999).CrossRefGoogle Scholar
Lipp, G. and Körber, C.: On the engulfment of spherical particles by a moving ice — liquid interface. J. Crystal Growth 130, 475489 (1993).CrossRefGoogle Scholar
Lipp, G., Körber, C., and Rau, G.: Critical growth rates of advancing ice-water interfaces for particle encapsulation. J. Crystal Growth 99, 206210 (1990).CrossRefGoogle Scholar
Park, M.S., Golovin, A.A., and Davis, S.H.: The encapsulation of particles and bubbles by an advancing solidification front. J. Fluid Mech. 560, 415 (2006).CrossRefGoogle Scholar
Kim, J-W., Tazumi, K., Okaji, R., and Ohshima, M.: Honeycomb monolith-structured silica with highly ordered, three-dimensionally interconnected macroporous walls. Chem. Mater. 21, 34763478 (2009).CrossRefGoogle Scholar
Zhang, H., Long, J., and Cooper, A.I.: Aligned porous materials by directional freezing of solutions in liquid CO2. J. Am. Chem. Soc. 127, 1348213483 (2005).CrossRefGoogle ScholarPubMed
Maki, T. and Sakka, S.: Formation of alumina fibers by unidirectional freezing of gel. J. Non-Cryst. Solids 82, 239245 (1986).CrossRefGoogle Scholar
Mukai, S.R., Nishihara, H., and Tamon, H.: Porous microfibers and microhoneycombs synthesized by ice templating. Catal. Surv. Asia 10, 161171 (2006).CrossRefGoogle Scholar
Yan, J., Wu, Z., and Tan, L.: Self-assembly of polystyrene nanoparticles induced by ice templating. in Proceedings of SPIE, edited by Leng, J., Asundi, A.K., and Ecke, W. (Second International Conference on Smart Materials and Nanotechnology in Engineering, SPIE, Weihai, China, 2009), p. 749375.Google Scholar
Mukai, S.R., Mitani, K., Murata, S., Nishihara, H., and Tamon, H.: Assembling of nanoparticles using ice crystals. Mater. Chem. Phys. 123, 347350 (2010).CrossRefGoogle Scholar
Shi, Q., An, Z., Tsung, C-K., Liang, H., Zheng, N., Hawker, C.J., and Stucky, G.D.: Ice-templating of core/shell microgel fibers through “Bricks-and-Mortar” assembly. Adv. Mater. 19, 45394543 (2007).CrossRefGoogle Scholar
Zhang, H., Edgar, D., Murray, P., Rak-Raszewska, A., Glennon-Alty, L., and Cooper, A.I.: Synthesis of porous microparticles with aligned porosity. Adv. Funct. Mater. 18, 222228 (2008).CrossRefGoogle Scholar
Witte, A. and Ulrich, J.: An alternative technology to form tablets. Chem. Eng. Technol. 33, 757761 (2010).CrossRefGoogle Scholar
Pachulski, N. and Ulrich, J.: Production of tablet-like solid bodies without pressure by sol-gel processes. Lett. Drug Des. Discovery 4, 7881 (2007).CrossRefGoogle Scholar
Szepes, A., Ulrich, J., Farkas, Z., Kovács, J., and Szabó-Révész, P.: Freeze-casting technique in the development of solid drug delivery systems. Chem. Eng. Process 46, 230238 (2007).CrossRefGoogle Scholar
Ma, L., Jin, A., Xie, Z., and Lin, W.: Freeze drying significantly increases permanent porosity and hydrogen uptake in 4,4-connected metal-organic frameworks. Angew. Chem. 48, 99059908 (2009).CrossRefGoogle Scholar
Mu, C., Su, Y., Sun, M., Chen, W., and Jiang, Z.: Fabrication of microporous membranes by a feasible freeze method. J. Membr. Sci. 361, 1521 (2010).CrossRefGoogle Scholar
Li, A., Thornton, A., Deuser, B., and Watts, J.: Freeze-form extrusion fabrication of functionally graded material composites using zirconium carbide and tungsten, in Proceedings of SFF Symposium, edited by Beaman, J., Bourell, D., Crawford, R., Marcus, H., and Seepersad, C.C. (Twenty Third Annual International Solid Freeform Fabrication Symposium, An Additive Manufacturing Conference, The University of Texas at Austin, Austin, Texas, 2012), p. 467.Google Scholar
Huang, T., Mason, M., Hilmas, G., and Leu, M.C.: Freeze-form extrusion fabrication of ceramic parts. Virtual Phys. Prototyp. 1, 93100 (2006).CrossRefGoogle Scholar
Zhao, X., Landers, R.G., and Leu, M.C.: Adaptive extrusion force control of freeze-form extrusion fabrication processes. J. Manuf. Sci. Eng. 132, 064504 (2010).CrossRefGoogle Scholar
Smay, J.E., Cesarano, J., and Lewis, J.A.: Colloidal inks for directed assembly of 3-D periodic structures. Langmuir 18, 54295437 (2002).CrossRefGoogle Scholar
Nakata, M., Tanihata, K., Yamaguchi, S., and Suganuma, K.: Fabrication of porous alumina sintered bodies by a Gelate-freezing method. J. Ceram. Soc. Jpn. 113, 712715 (2005).CrossRefGoogle Scholar
Qian, L., Ahmed, A., Foster, A., Rannard, S.P., Cooper, A.I., and Zhang, H.: Systematic tuning of pore morphologies and pore volumes in macroporous materials by freezing. J. Mater. Chem. 19, 5212 (2009).CrossRefGoogle Scholar
Schoof, H., Apel, J., Heschel, I., and Rau, G.: Control of pore structure and size in freeze-dried collagen sponges. J. Biomed. Mater. Res. 58, 352357 (2001).CrossRefGoogle ScholarPubMed
Deville, S., Saiz, E., Nalla, R.K., and Tomsia, A.P.: Freezing as a path to build complex composites. Science 311, 515518 (2006).CrossRefGoogle ScholarPubMed
Waschkies, T., Oberacker, R., and Hoffmann, M.J.: Control of lamellae spacing during freeze casting of ceramics using double-side cooling as a novel processing route. J. Am. Ceram. Soc. 92, 7984 (2009).CrossRefGoogle Scholar
Nishihara, H., Iwamura, S., and Kyotani, T.: Synthesis of silica-based porous monoliths with straight nanochannels using an ice-rod nanoarray as a template. J. Mater. Chem. 18, 36623670 (2008).CrossRefGoogle Scholar
Zhang, Y., Hu, L., and Han, J.: Preparation of a dense/porous bilayered ceramic by applying an electric field during freeze casting. J. Am. Ceram. Soc. 92, 18741876 (2009).CrossRefGoogle Scholar
Tang, Y.F., Zhao, K., Wei, J-Q., and Qin, Y.S.: Fabrication of aligned lamellar porous alumina using directional solidification of aqueous slurries with an applied electrostatic field. J. Eur. Ceram. Soc. 30, 19631965 (2010).CrossRefGoogle Scholar
Porter, M.M., Yeh, M., Strawson, J., Goehring, T., Lujan, S., Siripasopsotorn, P., Meyers, M.A., and McKittrick, J.: Magnetic freeze casting inspired by nature. Mater. Sci. Eng., A 556, 741750 (2012).CrossRefGoogle Scholar
Kim, J-W., Taki, K., Nagamine, S., and Ohshima, M.: Preparation of porous poly(L-lactic acid) honeycomb monolith structure by phase separation and unidirectional freezing. Langmuir 25, 53045312 (2009).CrossRefGoogle ScholarPubMed
Okaji, R., Sakashita, S., Tazumi, K., Taki, K., Nagamine, S., and Ohshima, M.: Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. J. Mater. Sci. 48, 20382045 (2012).CrossRefGoogle Scholar
Münch, E., Saiz, E., Tomsia, A.P., and Deville, S.: Architectural control of freeze-cast ceramics through additives and templating. J. Am. Ceram. Soc. 92, 15341539 (2009).CrossRefGoogle Scholar
Sangwal, K.: Additives and Crystallization Processes (John Wiley & Sons, Ltd, Chichester, UK, 2007).CrossRefGoogle Scholar
Deville, S., Maire, E., Lasalle, A., Bogner, A., Gauthier, C., Leloup, J., and Guizard, C.: In situ x-ray radiography and tomography observations of the solidification of aqueous alumina particle suspensions-part I: Initial instants. J. Am. Ceram. Soc. 92, 24892496 (2009).CrossRefGoogle Scholar
Sofie, S.W.: Fabrication of functionally graded and aligned porosity in thin ceramic substrates with the novel freeze-tape-casting process. J. Am. Ceram. Soc. 90, 20242031 (2007).CrossRefGoogle Scholar
Chen, Y., Bunch, J., Li, T., Mao, Z., and Chen, F.: Novel functionally graded acicular electrode for solid oxide cells fabricated by the freeze-tape-casting process. J. Power Sources 213, 9399 (2012).CrossRefGoogle Scholar
Hostler, S., Abramson, A., Gawryla, M.D., Bandi, S., and Schiraldi, D.A.: Thermal conductivity of a clay-based aerogel. Int. J. Heat Mass Transfer 52, 665669 (2009).CrossRefGoogle Scholar
Aizenberg, J., Weaver, J.C., Thanawala, M.S., Sundar, V.C., Morse, D.E., and Fratzl, P.: Skeleton of Euplectella sp.: Structural hierarchy from the nanoscale to the macroscale. Science 309, 275278 (2005).CrossRefGoogle Scholar
Meyers, M.A., Chen, P-Y., Lin, A.Y-M., and Seki, Y.: Biological materials: Structure and mechanical properties. Prog. Mater. Sci. 53, 1206 (2008).CrossRefGoogle Scholar
Zuo, K., Zeng, Y-P., and Jiang, D.: Effect of polyvinyl alcohol additive on the pore structure and morphology of the freeze-cast hydroxyapatite ceramics. Mater. Sci. Eng., C 30, 283287 (2010).CrossRefGoogle ScholarPubMed
Zhang, Y., Zuo, K., and Zeng, Y-P.: Effects of gelatin addition on the microstructure of freeze-cast porous hydroxyapatite ceramics. Ceram. Int. 35, 21512154 (2009).CrossRefGoogle Scholar
Ye, F., Zhang, J., Zhang, H., and Liu, L.: Pore structure and mechanical properties in freeze cast porous Si3N4 composites using polyacrylamide as an addition agent. J. Alloys Compd. 506, 423427 (2010).CrossRefGoogle Scholar
Pekor, C.M., Kisa, P., and Nettleship, I.: Effect of polyethylene glycol on the microstructure of freeze-cast alumina. J. Am. Ceram. Soc. 91, 31853190 (2008).CrossRefGoogle Scholar
Sobolev, S.L.: Rapid colloidal solidifications under local nonequilibrium diffusion conditions. Phys. Lett. A 1, 14 (2012).Google Scholar
Deville, S., Maire, E., Lasalle, A., Bogner, A., Gauthier, C., Leloup, J., and Guizard, C.: In situ x-ray radiography and tomography observations of the solidification of aqueous alumina particles suspensions. Part II: Steady state. J. Am. Ceram. Soc. 92, 24972503 (2009).CrossRefGoogle Scholar
Elliott, J.A.W. and Peppin, S.S.L.: Particle trapping and banding in rapid colloidal solidification. Phys. Rev. Lett. 107, 168301 (2011).CrossRefGoogle ScholarPubMed
Lasalle, A., Guizard, C., Maire, E., Adrien, J., and Deville, S.: Particle redistribution and structural defect development during ice templating. Acta Mater. 60, 45944603 (2012).CrossRefGoogle Scholar
Studart, A.R., Studer, J., Xu, L., Yoon, K., Shum, H.C., and Weitz, D.A.: Hierarchical porous materials made by drying complex suspensions. Langmuir 27, 955964 (2011).CrossRefGoogle ScholarPubMed
Mishchenko, L., Hatton, B.D., Kolle, M., and Aizenberg, J.: Patterning hierarchy in direct and inverse opal crystals. Small 8, 19041911 (2012).CrossRefGoogle ScholarPubMed
Araki, K. and Halloran, J.W.: Porous ceramic bodies with interconnected pore channels by a novel freeze casting technique. J. Am. Ceram. Soc. 88, 11081114 (2005).CrossRefGoogle Scholar
Deville, S., Viazzi, C., Leloup, J., Lasalle, A., Guizard, C., Maire, E., Adrien, J., and Gremillard, L.: Ice shaping properties, similar to that of antifreeze proteins, of a zirconium acetate complex. PLoS One 6, e26474 (2011).CrossRefGoogle ScholarPubMed
Hunger, P.M., Donius, A.E., and Wegst, U.G.K.: Platelets self-assemble into porous nacre during freeze casting. J. Mech. Behav. Biomed. Mater. 19, 8793 (2013).CrossRefGoogle ScholarPubMed
Barr, S.A. and Luijten, E.: Structural properties of materials created through freeze casting. Acta Mater. 58, 709715 (2010).CrossRefGoogle Scholar
Shen, X., Chen, L., Li, D., Zhu, L., Wang, H., Liu, C., Wang, Y., Xiong, Q., and Chen, H.: Assembly of colloidal nanoparticles directed by the microstructures of polycrystalline ice. ACS Nano 5, 84268433 (2011).CrossRefGoogle ScholarPubMed
Romeo, H.E., Hoppe, C.E., López-Quintela, M.A., Williams, R.J.J., Minaberry, Y., and Jobbágy, M.: Directional freezing of liquid crystalline systems: From silver nanowire/PVA aqueous dispersions to highly ordered and electrically conductive macroporous scaffolds. J. Mater. Chem. 22, 9195 (2012).CrossRefGoogle Scholar
Hunger, P.M., Donius, A.E., and Wegst, U.G.K.: Structure-property-processing correlations in freeze-cast composite scaffolds. Acta Biomater. 9(5), (2013).CrossRefGoogle ScholarPubMed
Lee, J. and Deng, Y.: The morphology and mechanical properties of layer structured cellulose microfibril foams from ice-templating methods. Soft Matter 7, 6034 (2011).CrossRefGoogle Scholar
Henzie, J., Grünwald, M., Widmer-Cooper, A., Geissler, P.L., and Yang, P.: Self-assembly of uniform polyhedral silver nanocrystals into densest packings and exotic superlattices. Nat. Mater. 11, 131137 (2012).CrossRefGoogle Scholar
Israelachvili, J.N., Mitchell, D.J., and Ninham, B.W.: Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J. Chem. Soc., Faraday Trans. 2 72, 1525 (1976).CrossRefGoogle Scholar
Brinker, C.J., Lu, Y., Sellinger, A., and Fan, H.: Evaporation-induced self-assembly: Nanostructures made easy. Adv. Mater. 11, 579585 (1999).3.0.CO;2-R>CrossRefGoogle Scholar
Amirouche, I., Klotz, M., Viazzi, C., Deville, S., and Guizard, C.: Unexpected self-assembly of amphiphiles below room temperature: A route to novel hierarchical mesoporous materials. Chem. Mater. (submitted).Google Scholar
Style, R., Peppin, S.S.L., Cocks, A., and Wettlaufer, J.S.: Ice-lens formation and geometrical supercooling in soils and other colloidal materials. Phys. Rev. E 84, 112 (2011).CrossRefGoogle ScholarPubMed
Style, R.W. and Peppin, S.S.L.: The kinetics of ice-lens growth in porous media. J. Fluid Mech. 692, 482498 (2012).CrossRefGoogle Scholar
Landi, E., Valentini, F., and Tampieri, A.: Porous hydroxyapatite/gelatine scaffolds with ice-designed channel-like porosity for biomedical applications. Acta Biomater. 4, 16201626 (2008).CrossRefGoogle ScholarPubMed
Fu, Q., Rahaman, M.N., Dogan, F., and Bal, B.S.: Freeze casting of porous hydroxyapatite scaffolds. II. Sintering, microstructure, and mechanical behavior. J. Biomed. Mater. Res. Part B 86, 514522 (2008).CrossRefGoogle ScholarPubMed
Anderson, A.M. and Worster, M.G.: Periodic ice banding in freezing colloidal dispersions. Langmuir 28, 1651216523 (2012).CrossRefGoogle ScholarPubMed
Thies-Weesie, D. and Philipse, A.: Liquid permeation of bidisperse colloidal hard-sphere packings and the Kozeny-Carman scaling relation. J. Colloid Interface Sci. 162, 470480 (1994).CrossRefGoogle Scholar
Spannuth, M., Mochrie, S., Peppin, S.S.L., and Wettlaufer, J.S.: Particle-scale structure in frozen colloidal suspensions from small-angle x-ray scattering. Phys. Rev. E 83, 32 (2011).CrossRefGoogle ScholarPubMed
Shanti, N.O., Araki, K., and Halloran, J.W.: Particle redistribution during dendritic solidification of particle suspensions. J. Am. Ceram. Soc. 89, 24442447 (2006).CrossRefGoogle Scholar
Deville, S. and Bernard-Granger, G.: Influence of surface tension, osmotic pressure and pores morphology on the densification of ice-templated ceramics. J. Eur. Ceram. Soc. 31, 983987 (2011).CrossRefGoogle Scholar
Zheng, J., Salamon, D., Lefferts, L., Wessling, M., and Winnubst, L.: Ceramic microfluidic monoliths by ice templating. Microporous Mesoporous Mater. 134, 216219 (2010).CrossRefGoogle Scholar
Lake, R.A. and Lewis, L.E.: Salt rejection by sea ice during growth. J. Geophys. Res. 75, 583597 (1970).CrossRefGoogle Scholar
Worster, M.G. and Wettlaufer, J.S.: Natural convection, solute trapping, and channel formation during solidification of saltwater. J. Phys. Chem. B 101, 61326136 (1997).CrossRefGoogle Scholar
Hunke, E. C., Notz, D., Turner, A.K., and Vancoppenolle, M.: The multiphase physics of sea ice: A review. Cryosphere Discuss. 5, 19491993 (2011).Google Scholar
Petrich, C. and Eicken, H.: In Sea Ice (Wiley-Blackwell, Malden, MA, 2008), pp. 2378.Google Scholar
Wettlaufer, J.S. and Worster, M.G.: Natural convection during solidification of an alloy from above with application to the evolution of sea ice. J. Fluid Mech. 344, 291316 (1997).CrossRefGoogle Scholar
“Brinicle” ice finger of death filmed in Antarctic. http://www.bbc.co.uk/nature/15835017 (accessed January 22, 2013).Google Scholar
Peppin, S.S.L., Elliott, J.A.W., and Worster, M.G.: Solidification of colloidal suspensions. J. Fluid Mech. 554, 147 (2006).CrossRefGoogle Scholar
Peppin, S.S.L., Majumdar, A., and Wettlaufer, J.S.: Morphological instability of a non-equilibrium ice-colloid interface. Proc. R. Soc. London, Ser. A 466, 177194 (2009).Google Scholar
Perey, F.G.J. and Pounder, E.R.: Crystal orientation in ice sheets. Canadian J. Phys. 36, 494502 (1958).CrossRefGoogle Scholar
Michel, B. and Ramseier, R.O.: Classification of river and lake ice. Canadian Geotech. J. 8, 3645 (1971).CrossRefGoogle Scholar
Gow, A.J.: Orientation textures in ice sheets of quietly frozen lakes. J. Crystal Growth 74, 247258 (1986).CrossRefGoogle Scholar
Jeffries, M.O., Weeks, W.F., Shaw, R., and Morris, K.: Structural characteristics of congelation and platelet ice and their role in the development of Antarctic land-fast sea ice. J. Glaciol. 39, 223238 (1993).CrossRefGoogle Scholar
Cole, D.M.: The microstructure of ice and its influence on mechanical properties. Eng. Fracture Mech. 68, 17971822 (2001).CrossRefGoogle Scholar
Müller-Stoffels, M., Langhorne, P.J., Petrich, C., and Kempema, E.W.: Preferred crystal orientation in fresh water ice. Cold Reg. Sci. Technol. 56, 19 (2009).CrossRefGoogle Scholar
Maus, S.: The planar-cellular transition during freezing of natural waters, in Physics and Chemistry of Ice: Proceedings of the 11th International Conference on the Physics and Chemistry of Ice, Bremerhaven, Germany 2006; edited by W.F. Kuhs (Royal Society of Chemistry, Cambridge, UK, 2007), pp. 383389.Google Scholar
Kawano, Y. and Ohashi, T.: A mesoscopic numerical study of sea ice crystal growth and texture development. Cold Reg. Sci. Technol. 57, 3948 (2009).CrossRefGoogle Scholar
Eicken, H., Weissenberger, I., Bussmann, J., Freitag, J., Schuster, W., Delgado, F.V., Evers, K., Jochmann, P., Krembs, C., Gradinger, R., Lindemann, F., Cottier, F., Hall, R., Wadhams, P., Reisemann, M., Kuosa, H., Ikävalko, J., and Leonard, G.H.: Ice tank studies of physical and biological sea-ice processes, in Ice in Surface Waters, edited by Shen, T. (Proceedings of the 14th International Symposium on Ice, Potsdam, New York, 1998), p. 363.Google Scholar
Launey, M.E., Munch, E., Alsem, D.H., Barth, H.B., Saiz, E., Tomsia, A.P., and Ritchie, R.O.: Designing highly toughened hybrid composites through nature-inspired hierarchical complexity. Acta Mater. 57, 29192932 (2009).CrossRefGoogle Scholar
Storey, K. and Storey, J.: Natural freezing survival in animals. Annu. Rev. Ecol. Evol. Syst. 27, 365386 (1996).CrossRefGoogle Scholar
Devireddy, R.V., Barratt, P.R., Storey, K.B., and Bischof, J.C.: Liver freezing response of the freeze-tolerant wood frog, Rana sylvatica, in the presence and absence of glucose. Cryobiology 38, 327338 (1999).CrossRefGoogle ScholarPubMed
Zhang, Y., Hu, L., Han, J., and Jiang, Z.: Freeze casting of aqueous alumina slurries with glycerol for porous ceramics. Ceram. Int. 36, 617621 (2010).CrossRefGoogle Scholar
Franks, F.: Nucleation of ice and its management in ecosystems. Philos. Trans. R. Soc. London, Ser. A 361, 557574 (2003).CrossRefGoogle ScholarPubMed
Amornwittawat, N., Wang, S., Duman, J.G., and Wen, X.: Polycarboxylates enhance beetle antifreeze protein activity. Biochim. Biophys. Acta 1784, 19421948 (2008).CrossRefGoogle ScholarPubMed
Scotter, A.J., Marshall, C.B., Graham, L.A., Gilbert, J.A., Garnham, C.P., and Davies, P.L.: The basis for hyperactivity of antifreeze proteins. Cryobiology 53, 229239 (2006).CrossRefGoogle ScholarPubMed
Davies, P.L., Baardsnes, J., Kuiper, M.J., and Walker, V.K.: Structure and function of antifreeze proteins. Philos. Trans. R. Soc. London, Ser. B 357, 927935 (2002).CrossRefGoogle ScholarPubMed
Meister, K., Ebbinghaus, S., Xu, Y., Duman, J.G., DeVries, A., Gruebele, M., Leitner, D.M., and Havenith, M.: Long-range protein-water dynamics in hyperactive insect antifreeze proteins. PNAS 110, 16171622 (2013).CrossRefGoogle ScholarPubMed
Wowk, B., Leitl, E., Rasch, C.M., Mesbah-Karimi, N., Harris, S.B., and Fahy, G.M.: Vitrification enhancement by synthetic ice blocking agents. Cryobiology 40, 228236 (2000).CrossRefGoogle ScholarPubMed
Gibson, M.I., Barker, C.A., Spain, S.G., Albertin, L., and Cameron, N.R.: Inhibition of ice crystal growth by synthetic glycopolymers: Implications for the rational design of antifreeze glycoprotein mimics. Biomacromolecules 10, 328333 (2009).CrossRefGoogle ScholarPubMed
Gibson, M.I.: Slowing the growth of ice with synthetic macromolecules: Beyond antifreeze(glyco) proteins. Polymer Chem. 1, 1141 (2010).CrossRefGoogle Scholar
Inada, T. and Modak, P.: Growth control of ice crystals by poly(vinyl alcohol) and antifreeze protein in ice slurries. Chem. Eng. Sci. 61, 31493158 (2006).CrossRefGoogle Scholar
Mastai, Y., Rudloff, J., Cölfen, H., and Antonietti, M.: Control over the structure of ice and water by block copolymer additives. Chemphyschem 3, 119123 (2002).3.0.CO;2-R>CrossRefGoogle ScholarPubMed
Chakrabartty, A., Yang, D.S., and Hew, C.L.: Structure-function relationship in a winter flounder antifreeze polypeptide. II. Alteration of the component growth rates of ice by synthetic antifreeze polypeptides. J. Bio. Chem. 264, 1131311316 (1989).CrossRefGoogle Scholar
Deville, S., Viazzi, C., and Guizard, C.: Ice-structuring mechanism for zirconium acetate. Langmuir 28, 1489214898 (2012).CrossRefGoogle ScholarPubMed
Mizrahy, O., Bar-Dolev, M., Guy, S., and Braslavsky, I.: Inhibition of ice growth and recrystallization by zirconium acetate and zirconium acetate hydroxide. PLoS One 8, e59540 (2013).CrossRefGoogle ScholarPubMed
Budke, C. and Koop, T.: Ice recrystallization inhibition and molecular recognition of ice faces by poly(vinyl alcohol). Chemphyschem 7, 26012606 (2006).CrossRefGoogle ScholarPubMed
Azouni, M.A. and Casses, P.: Thermophysical properties effects on segregation during solidification. Adv. Colloid Interface Sci. 75, 83106 (1998).CrossRefGoogle Scholar
Tao, T., Peng, X.F., and Lee, D.J.: Force of a gas bubble on a foreign particle in front of a freezing interface. J. Colloid Interface Sci. 280, 409416 (2004).CrossRefGoogle ScholarPubMed
Ishiguro, H. and Rubinsky, B.: Mechanical interactions between ice crystals and red blood cells during directional solidification. Cryobiology 31, 483500 (1994).CrossRefGoogle ScholarPubMed
Chang, A., Dantzig, J.A., Darr, B.T., and Hubel, A.: Modeling the interaction of biological cells with a solidifying interface. J. Comput. Phys. 226, 18081829 (2007).CrossRefGoogle Scholar
Attwater, J., Wochner, A., Pinheiro, V.B., Coulson, A., and Holliger, P.: Ice as a protocellular medium for RNA replication. Nat. Commun. 1, 18 (2010).CrossRefGoogle ScholarPubMed
Liu, R. and Orgel, L.E.: Efficient oligomerization of negatively-charged β-amino acids at −20 °C. J. Am. Chem. Soc. 119, 47914792 (1997).CrossRefGoogle Scholar
Monnard, P-A., Kanavarioti, A., and Deamer, D.W.: Eutectic phase polymerization of activated ribonucleotide mixtures yields quasi-equimolar incorporation of purine and pyrimidine nucleobases. J. Am. Chem. Soc. 125, 1373413740 (2003).CrossRefGoogle ScholarPubMed
Ferris, J.P.: in The Molecular Origins of Life (Cambridge University Press, Cambridge, 1998), pp. 255268.CrossRefGoogle Scholar
Graham, J.D. and Roberts, J.T.: Chemical reactions of organic molecules adsorbed at ice: 2. Chloride substitution in 2-methyl-2-propanol. Langmuir 16, 32443248 (2000).CrossRefGoogle Scholar
Trinks, H., Schröder, W., and Bierbricher, C.K.: Sea ice as a promoter of the emergence of first life. Origins Life Evol. Biosphere 35, 429445 (2005).CrossRefGoogle Scholar
Zahnle, K.J. and Walker, J.C.G.: The evolution of solar ultraviolet luminosity. Rev. Geophys. 20, 280 (1982).CrossRefGoogle Scholar
Wynn-Williams, D.D., Cabrol, N.A., Grin, E.A., Haberle, R.M., and Stoker, C.R.: Brines in seepage channels as eluants for subsurface relict biomolecules on Mars? Astrobiology 1, 165184 (2001).CrossRefGoogle ScholarPubMed
Ball, P.: Cold comfort. Nat. Mater. 5, 173174 (2006).CrossRefGoogle ScholarPubMed
Yoshizawa, K., Okuzono, T., Koga, T., Taniji, T., and Yamanaka, J.: Exclusion of impurity particles during grain growth in charged colloidal crystals. Langmuir 27, 1342013427 (2011).CrossRefGoogle ScholarPubMed
de Villeneuve, V.W.A., Dullens, R.P.A., Aarts, D.G.A.L., Groeneveld, E., Scherff, J.H., Kegel, W.K., and Lekkerkerker, H.N.W.: Colloidal hard-sphere crystal growth frustrated by large spherical impurities. Science 309, 12311233 (2005).CrossRefGoogle ScholarPubMed
Wettlaufer, J.S. and Worster, M.G.: Premelting dynamics. Annu. Rev. Fluid Mech. 38, 427452 (2006).CrossRefGoogle Scholar
Workman, E., Truby, F., and Drost-Hansen, W.: Electrical conduction in halide-contaminated ice. Phys. Rev. 94, 1073–1073 (1954).CrossRefGoogle Scholar
Decroly, J.C., Gränicher, H., and Jaccard, C.: Caractère de la conductivité électrique de la glace. Helv. Phys. Acta 30, 465467 (1957).Google Scholar
Bullemer, B., Engelhardt, H., and Riehl, N.: Protonic conductivity of ice I. High temperature region, in Proceedings of the International Symposium on Physics of Ice, Munich, Germany, 1968; edited by N. Riehl, B. Bullemer, and H. Engelhardt (Plenum Press, New York, 1969), pp. 416429.Google Scholar
Waschkies, T., Oberacker, R., and Hoffmann, M.J.: Investigation of structure formation during freeze-casting from very slow to very fast solidification velocities. Acta Mater. 59, 51355145 (2011).CrossRefGoogle Scholar
Ma, H., Gao, Y., Li, Y., Gong, J., Li, X., Fan, B., and Deng, Y.: Ice-templating synthesis of polyaniline microflakes stacked by one-dimensional nanofibers. J. Phys. Chem. C 113, 90479052 (2009).CrossRefGoogle Scholar
Barg, S., Innocentini, M.D.M., Meloni, R.V., Chacon, W.S., Wang, H., Koch, D., and Grathwohl, G.: Physical and high-temperature permeation features of double-layered cellular filtering membranes prepared via freeze casting of emulsified powder suspensions. J. Membrane Sci. 383, 3543 (2011).CrossRefGoogle Scholar
Huang, T.S., Rahaman, M.N., Doiphode, N.D., Leu, M.C., Bal, B.S., Day, D.E., and Liu, X.: Porous and strong bioactive glass (13–93) scaffolds fabricated by freeze extrusion technique. Mater. Sci. Eng., C 31, 14821489 (2011).CrossRefGoogle Scholar
Libbrecht, K.G.: The physics of snow crystals. Rep. Prog. Phys. 68, 855895 (2005).CrossRefGoogle Scholar
Bogner, A.: unpublished results.Google Scholar
Assur, A.: Composition of Sea Ice and its Tensile Strength in Proceedings on the conference Arctic Sea Ice, Easton Maryland, 1958. (National Academy of Science and National Research Council, Washington, DC, 1960), pp. 44.Google Scholar
CC-BY 2.0 license: http://creativecommons.org/licenses/by/2.0/deed.fr (accessed January 23, 2013).Google Scholar
Peltier, R., Evans, C.W., DeVries, A.L., Brimble, M.A., Dingley, A.J., and Williams, D.E.: Growth habit modification of ice crystals using antifreeze glycoprotein (AFGP) analogues. Cryst. Growth Des. 10, 50665077 (2010).CrossRefGoogle Scholar
Graether, S.P., Kuiper, M.J., Walker, V.K., Jia, Z., Sykes, B.D., and Davies, P.L.: β-Helix structure and ice-binding properties of a hyperactive antifreeze protein from an insect. Nature 46, 325328 (2000).CrossRefGoogle Scholar
Bar, M., Celik, Y., Fass, D., and Braslavsky, I.: Interactions of β-helical antifreeze protein mutants with ice. Cryst. Growth Des. 8, 29542963 (2008).CrossRefGoogle Scholar
Trinks, H., Schröder, W., and Biebricher, C.K.: Ice and the origin of life. Origins Life Evol. Biosphere 35, 429445 (2005).CrossRefGoogle ScholarPubMed
Dillon, S.J., Tang, M., Carter, W.C., and Harmer, M.P.: Complexion: A new concept for kinetic engineering in materials science. Acta Mater. 55, 62086218 (2007).CrossRefGoogle Scholar