Hostname: page-component-5f745c7db-xx4dx Total loading time: 0 Render date: 2025-01-06T21:09:55.179Z Has data issue: true hasContentIssue false

Icosahedral Phase Formation Domain in Al–Cu–Fe System by Mechanical Alloying

Published online by Cambridge University Press:  31 January 2011

P. Barua
Affiliation:
Department of Physics and Meteorology, Indian Institute of Technology, Kharagpur-721 302, India
B. S. Murty
Affiliation:
Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur-732 302, India
B. K. Mathur
Affiliation:
Department of Physics and Meteorology, Indian Institute of Technology, Kharagpur-721 302, India
V. Srinivas*
Affiliation:
Department of Physics and Meteorology, Indian Institute of Technology, Kharagpur-721 302, India
*
a)Address all correspondence to this author. e-mail: veeturi@phy.iitkgp.ernet.in
Get access

Abstract

A systematic composition dependence study on icosahedral phase (i-phase) formation in the Al–Cu–Fe system has been carried out. Structural evolution during mechanical alloying and on subsequent heat treatment has been investigated by x-ray diffraction and transmission electron microscopy. The i-phase is observed to evolve from the reaction between the Al2Cu and b phases. The influence of the Cu to Fe ratio (RCuFe), Al to transition metal ratio (RAlTM), and the electron to atom ratio (e/a) on the volume fraction of the i-phase has been studied. The analysis of the present results and those published earlier indicates that quasicrystal-forming ability correlates better with the RAlTM and e/a ratios. The volume fraction of the i-phase is maximum when the RAlTM ˜ 2.3 and e/a ratio ˜ 2.0. Formation of the i-phase in Al65Cu25Fe10 by mechanical alloying is reported for the first time.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Follstaedt, D.M. and Knapp, J.A., Phys. Rev. Lett. 56, 1827 (1986).CrossRefGoogle Scholar
Eckert, J., Schultz, L., and Urban, K., Appl. Phys. Lett. 55, 117 (1989).CrossRefGoogle Scholar
Klein, T. and Symko, O.G., Appl. Phys. Lett. 64, 431 (1994).CrossRefGoogle Scholar
Suryanarayana, C., Prog. Mater. Sci. 46, 1 (2001).Google Scholar
Ivanov, E., Konstanchuk, I.G., Bokhonov, B.D., and Boldyrev, B.D., React. Solids, 7, 167 (1989).CrossRefGoogle Scholar
Tsai, A.P., Inoue, A., and Masumoto, T., Jpn. J. Appl. Phys. 26, L1505 (1987).CrossRefGoogle Scholar
Ebalard, S. and Spaepen, F., J. Mater. Res. 4, 39 (1989); Z. Zhang, N.C. Li, and K. Urban, J. Mater. Res. 6, 366 (1991).Google Scholar
Eckert, J., Schultz, L., and Urban, K., Acta Metall. Mater. 39, 1497 (1991).CrossRefGoogle Scholar
Asahi, N., Maki, T., Masumoto, S., and Sawai, T., Mater. Sci. Eng. A181/182, 841 (1994).Google Scholar
Barua, P., Murty, B.S., and Srinivas, V., Mater. Sci. Eng. A304–306, 863 (2001).CrossRefGoogle Scholar
Barua, P., Srinivas, V., and Murty, B.S., Philos. Mag. A80, 1207 (2000).CrossRefGoogle Scholar
Salimon, A.I., Korsunsky, A.M., Shelekhov, E.V., and Sviridova, T.A., Mater. Sci. Forum, 321–324, 676 (2000).Google Scholar
Korsunsky, A.M., Salimon, A.I., Pape, I., Polyakov, A.M., and Fitch, A.N., Scr. Mater. 44, 217 (2001).Google Scholar
Eckert, J., Schultz, L., and Urban, K., J. Less-Common Met. 167, 143 (1990).CrossRefGoogle Scholar
Cullity, B.D., Elements of X-ray Diffraction (Addison-Wesley, Reading, MA, 1978), p. 411.Google Scholar
Ishimasa, T., Fukano, Y., and Tsuchimori, M., Philos. Mag. Lett. 58, 157 (1988).Google Scholar
Lograsso, T.A. and Delaney, D.W., J. Mater. Res. 11, 2125 (1996).Google Scholar
Gui, J., Wang, J., Wang, R., Wang, D., Liu, J., and Chen, F., J. Mater. Res. 16, 1037 (2001).CrossRefGoogle Scholar
Rosas, G. and Perez, R., Mater. Lett. 36, 229 (1998).CrossRefGoogle Scholar
Faudot, F., Quivy, A., Calvayrac, Y., Gratias, D., and Harmelin, M., Mater. Sci. Eng. A181/182, 841 (1994).Google Scholar
Tsai, A.P., Tsurui, T., Memezawa, A., Aoki, K., Inoue, A., and Masumoto, T., Philos. Mag. Lett. 67, 393 (1993).CrossRefGoogle Scholar
Srinivas, V. and Dunlap, R.A., Philos. Mag. B64, 475 (1991).Google Scholar
Calvayrac, Y., Quivy, A., Bessiere, M., Lefebvre, S., Cornier-Quiquandon, M., and Gratias, D., J. Phys. (Paris) 51, 417 (1991).CrossRefGoogle Scholar
Barua, P., Srinivas, V., and Murty, B.S. (unpublished results, 2001).Google Scholar
Raynor, G.V., Prog. Met. Phys. 1, 531 (1949).Google Scholar
Tsai, A.P., Inoue, A., and Masumoto, T., The 1872nd Report of the Institute of Materials Research (Tohoku University, Sendai, Japan, 1991), p. 99.Google Scholar