Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-28T06:55:38.605Z Has data issue: false hasContentIssue false

Identification of hydrocarbon precursors to diamond in chemical vapor deposition using carbon monoxide reagent

Published online by Cambridge University Press:  03 March 2011

Curtis E. Johnson
Affiliation:
Chemistry Division, Research Department, Naval Air Warfare Center, Weapons Division, China Lake, California 93555–6001
Wayne A. Weimer
Affiliation:
Chemistry Division, Research Department, Naval Air Warfare Center, Weapons Division, China Lake, California 93555–6001
Get access

Abstract

Diamond films were grown by microwave plasma-assisted chemical vapor deposition using mixtures of 13CH4 and CO. Mass spectrometry was used to identify CO, CH4, and C2H2 as the stable gaseous products in the reactor exhaust gas. By comparing gaseous 13C compositions with that of the diamond films, the efficiency of diamond growth from methane (possibly via the methyl radical) is found to be about two orders of magnitude higher than that for carbon monoxide. Most of the diamond that is formed from the CO reagent results from the conversion of CO to hydrocarbons. The conversion of CO to hydrocarbons is attributed to activation of CO by high-energy electrons in the plasma.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Celii, F. G. and Butler, J. E., Annu. Rev. Phys. Chem. 42, 643 (1991).CrossRefGoogle Scholar
2Johnson, C. E., Weimer, W. A., and Cerio, F. M., J. Mater. Res. 7, 1427 (1992).Google Scholar
3Harris, S. J. and Martin, L. R., J. Mater. Res. 5, 2313 (1990), and references therein. This paper briefly reviews the literature.Google Scholar
4Martin, L. R. and Hill, M. W., J. Mater. Sci. Lett. 9, 621 (1990).Google Scholar
5D'Evelyn, M. P., Chu, C. J., Hauge, R. H., and Margrave, J. L., J. Appl. Phys. 71, 1528 (1992).Google Scholar
6Yarbrough, W. A., Tankala, K., and DebRoy, T., J. Mater. Res. 7, 379 (1992).Google Scholar
7Harris, S. J. and Weiner, A. M., Thin Solid Films 212, 201 (1992).Google Scholar
8Ito, K., Ito, T., and Hosoya, I., Chem. Lett. 589 (1988).Google Scholar
9Saito, Y., Tanaka, H., Sato, Y., and Fujita, K., Japanese Patent 62 265 198 (1987).Google Scholar
10Suzuki, J., Kawarada, H., Mar, K., Wei, J., Yokota, Y., and Hiraki, A., Jpn. J. Appl. Phys. 28, L281 (1989).Google Scholar
11Graham, R. J., Posthill, J. B., Rudder, R. A., and Markunas, R. J., Appl. Phys. Lett. 59, 2463 (1991).Google Scholar
12Aoyama, K., Uyama, H., and Matsumoto, O., J. Electrochem. Soc. 139, 2253 (1992).Google Scholar
13Saito, Y., Sato, K., Gomi, K., and Miyadera, H., J. Mater. Sci. 25, 1246 (1990).Google Scholar
14Saito, Y., Sato, K., Matuda, S., and Koinuma, H., J. Mater. Sci. 26, 2937 (1991).Google Scholar
15Muranaka, Y., Yamashita, H., Sato, K., and Miyadera, H., J. Appl. Phys. 67, 6247 (1990).Google Scholar
16Muranaka, Y., Yamashita, H., and Miyadera, H., Thin Solid Films 195, 257 (1991).Google Scholar
17Muranaka, Y., Yamashita, H., and Miyadera, H., J. Appl. Phys. 69, 8145 (1991).Google Scholar
18Muranaka, Y., Yamashita, H., and Miyadera, H., J. Cryst. Growth 112, 808 (1991).Google Scholar
19Nunotani, M., Komori, M., Yamasawa, M., Fujiwara, Y., Sakuta, K., Kobayashi, T., Nakashima, S., Minomo, S., Taniguchi, M., and Sugiyo, M., Jpn. J. Appl. Phys. 30, L1199 (1991).Google Scholar
20Cerio, F. M., Weimer, W. A., and Johnson, C. E., J. Mater. Res. 7, 1195 (1992).Google Scholar
21Weimer, W. A., Cerio, F. M., and Johnson, C. E., J. Mater. Res. 6, 2134 (1991).Google Scholar
22Liou, Y., Inspektor, A., Weimer, R., Knight, D., and Messier, R., J. Mater. Res. 5, 2305 (1990).Google Scholar
23Takeuchi, K. and Yoshida, T., J. Appl. Phys. 71, 2636 (1992).Google Scholar
24Mach, R., Drost, H., Dube, G., and Spangenber, H. J., Beitr. Plasma-phys. 23, 595 (1983).Google Scholar
25Hayashi, N., Etoh, Y., Kazahaya, T., Katsumata, S., and Aketagawa, M., in New Diamond Science and Technology, edited by Messier, R., Glass, J. T., Butler, J. E., and Roy, R. (Mater. Res. Soc. Int. Symp. Proc. NDST–2, Pittsburgh, PA, 1991), p. 473.Google Scholar
26Mitomo, T., Ohta, T., Kondoh, E., and Ohtsuka, K., J. Appl. Phys. 70, 4532 (1991).Google Scholar
27Muranaka, Y., Yamashita, H., and Miyadera, H., J. Mater. Sci. 26, 3235 (1991).Google Scholar
28Muranaka, Y., Yamashita, H., and Miyadera, H., J. Vac. Sci. Technol. A 9, 76 (1991).Google Scholar
29Banholzer, W. F. and Anthony, T. R., Thin Solid Films 212, 1 (1992).Google Scholar
30Johnson, C. E. and Weimer, W. A., in Diamond Optics V, edited by Feldman, A. and Holly, S. (Proc. SPIE, 1759, San Diego, CA, 1992), p. 36.Google Scholar
31A Gibbs free energy minimization software package was provided by R. J. Kee, Sandia Natl. Lab., Livermore, CA.Google Scholar
32Cerio, F. M. and Weimer, W. A., Appl. Phys. Lett. 59, 3387 (1991).Google Scholar
33In a hot filament reactor a feed gas of 1.5% O2 and 3% CH4 in H2 produced CO as the dominant product and essentially no C2H2 was present. Sommer, M. and Smith, F. W., in New Diamond Science and Technology, edited by Messier, R., Glass, J. T., Butler, J. E., and Roy, R. (Mater. Res. Soc. Int. Symp. Proc. NDST–2, Pittsburgh, PA, 1991), p. 443.Google Scholar
34McNamara, K. M. and Gleason, K. K., J. Appl. Phys. 71, 2884 (1992).Google Scholar
35Ferguson, R. E., Combustion and Flame 1, 431 (1957).Google Scholar
36Mertz, S. F., Hawley, M. C., and Asmussen, J., IEEE Trans. Plasma Sci. PS–4, 11 (1976), and references therein.Google Scholar
37Bachmann, P. K., Leers, D., and Lydtin, H., Diamond and Related Materials 1, 1 (1991).Google Scholar
38Rau, H. and Picht, F., J. Mater. Res. 7, 934 (1992).Google Scholar
39Rebello, J. H. D., Straub, D. L., and Subramaniam, V. V., J. Appl. Phys. 72, 1133 (1992).Google Scholar