Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-28T00:16:54.987Z Has data issue: false hasContentIssue false

Impression creep of lead

Published online by Cambridge University Press:  03 March 2011

Donyau Chiang
Affiliation:
Materials Science Program, Department of Mechanical Engineering, University of Rochester, Rochester, New York 14627–0133
J. C. M. Li
Affiliation:
Materials Science Program, Department of Mechanical Engineering, University of Rochester, Rochester, New York 14627–0133
Get access

Extract

The impression creep behavior of lead was investigated using a 100 μm diameter punch at ambient and elevated temperatures (433 K-563 K) under punching stresses of 6–70 MPa. The results were compared with the data obtained from conventional creep tests reported in the literature. Unlike the indentation creep test, the impression creep test showed a steady-state velocity after a short transient period when the flat-end cylindrical punch was pushed against the lead surface by a constant load. Both the temperature and stress dependences were comparable to those of the constant stress tensile creep tests under similar conditions. A master curve for lead was established by collecting data from the impression creep tests and the constant stress tensile creep tests. The indentation creep measurements for lead were included also. However, the indentation data depend on the load applied.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Chu, S. N. G. and Li, J.C.M., Mater. Sci. Eng. 39, 110 (1979).CrossRefGoogle Scholar
2Godavarti, P. S. and Murty, K. L., J. Mater. Sci. Lett. 6, 456458 (1987).CrossRefGoogle Scholar
3Jurhasz, A., Tasnadi, P., Szaszvari, P., and Kovacs, I., J. Mater. Sci. 21, 32873289 (1986).Google Scholar
4Yu, E. C. and Li, J.C.M., Philos. Mag. 36 (4), 811825 (1977).Google Scholar
5Yu, H. Y. and Li, J. C. M., J. Mater. Sci. 12, 22142222 (1977).Google Scholar
6Chu, S. N. G. and Li, J. C. M., J. Mater. Sci. 12, 22002208 (1977).CrossRefGoogle Scholar
7Yang, Fuqian and Li, J.C.M., J. Appl. Phys. 74, 43824397 (1993).CrossRefGoogle Scholar
8Torre, A. D. L., Adeva, P., and Aballe, M., J. Mater. Sci. 26, 43514354 (1991).CrossRefGoogle Scholar
9Raman, V. and Berriche, R., J. Mater. Res. 7, 627638 (1992).CrossRefGoogle Scholar
10Weertman, J., Trans. AIME 218, 207218 (1960).Google Scholar
11Feltham, P., Proc. Phys. Soc. 12–B, 11731188 (1956).CrossRefGoogle Scholar
12Mukherjee, A. K., Bird, J. E., and Dorn, I. E., Trans. ASM 62, 155178 (1969).Google Scholar
13Laudise, R. A., The Growth of Single Crystals, edited by Holonyak, N. Jr. (Prentice-Hall, Englewood Cliffs, NJ, 1970), pp. 164168.Google Scholar
14Yu, E. C., Ph.D. dissertation, University of Rochester (1977).Google Scholar
15Murthy, G. S. and Sastry, D. H., Phys. Status Solidi A 70, 6371 (1982).Google Scholar
16Nachtrieb, N. H. and Handler, G. S., J. Chem. Phys. 23 (9), 15691570 (1955).CrossRefGoogle Scholar
17Okkerse, B., Acta Metall. 2, 551553 (1954).Google Scholar
18Hudson, J. B. and Hoffman, R. E., Trans. AIME 221, 761770 (1961).Google Scholar
19Mohamed, F. A., Murty, K. L., and Morris, J. W. Jr., Metall. Trans. 4, 935940 (1973).CrossRefGoogle Scholar
20Meyers, M. A. and Chawla, K. K., Mechanical Metallurgy Principles and Applications (Prentice-Hall, Englewood Cliffs, NJ, 1984), p. 612.Google Scholar
21Tabor, D., in The Hardness of Metals, Chap. 3 (Clarendon Press, Oxford, 1951).Google Scholar
22Li, J. C. M., Trans. Metall. Soc. AIME 233, 219224 (1965).Google Scholar
23Balasubramanian, N. and Li, J. C. M., J. Mater. Sci. 5, 434444 (1970).Google Scholar
24Andrade, E. N. da C., Viscosity and Plasticity (Chemical Publishing Co., 1951), pp. 6869.Google Scholar
25Kestenbach, H. J., Krause, W., and da Silverira, T.L., Acta Metall. 26, 661670 (1978).CrossRefGoogle Scholar
26Lucas, G. E. and Pendleton, C., J. Nucl. Mater. 103&104, 15391544 (1981).Google Scholar