Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-05T00:48:58.701Z Has data issue: false hasContentIssue false

Improved critical current in MgB2 tapes sheathed with carbon steels

Published online by Cambridge University Press:  31 January 2011

H. Fujii
Affiliation:
Superconducting Materials Center, National Institute for Materials Science, Tsukuba, Ibaraki 305–0047, Japan
H. Kumakura
Affiliation:
Superconducting Materials Center, National Institute for Materials Science, Tsukuba, Ibaraki 305–0047, Japan
K. Togano
Affiliation:
Superconducting Materials Center, National Institute for Materials Science, Tsukuba, Ibaraki 305–0047, Japan
Get access

Abstract

We fabricated MgB2 tapes by a powder-in-tube method using sheath materials of Fe and carbon steel (CS). In the as-rolled state, the CS-sheathed tapes showed higher transport critical current density (Jc) values than the Fe-sheathed tape did. This is due to the higher-density MgB2 layer associated with the high mechanical strength of the CS. Furthermore, heat treatment above 800 °C was very effective in increasing the Jc of these tapes. The heat-treated CS-sheathed tapes showed Jc values of 10 kA/cm2 at 4.2 K and 7.5 T and still above 2 kA/cm2 at 10 T. These values are the highest ever reported for MgB2 tapes. An extrapolation to 0 T in the Jc-B data gave about 1 MA/cm2, which was independent of the sheath materials. Microstructural observations suggest that the high Jc and the small field dependence of the Jc properties of the CS-sheathed tapes can be ascribed to the improved grain connectivity and grain alignment produced by the high mechanical strength of CS.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Nagamatsu, J., Nakagawa, N., Muranaka, T., Zenitani, Y., and Akimitsu, J., Nature (London) 410, 63 (2001).CrossRefGoogle Scholar
2.Xu, M., Kitazawa, H., Takano, Y., Ye, J., Nishida, K., Abe, H., Matsushita, A., and Kido, G., Appl. Phys. Lett. 79, 2779 (2001).CrossRefGoogle Scholar
3.Lee, S., Mori, H., Matsui, T., Eltsev, Yu., Yamamoto, A., and Tajima, S., J. Phys. Soc. Jpn. 70, 2255 (2001).CrossRefGoogle Scholar
4.Larbalestier, D.C., Cooley, L.D., Rikel, M.O., Polyanskii, A.A., Jiang, J., Patnaik, S., Cai, X.Y., Feldmann, D.M., Gurevich, A., Squitieri, A.A., Naus, M.T., Eom, C.B., Hellstrom, E.E., Cava, R.J., Regan, K.A., Rogado, N., Hayward, M.A., He, T., Slusky, J.S., Khalifah, P., Inumaru, K., and Haas, M., Nature (London) 410, 186 (2001).CrossRefGoogle Scholar
5.Canfield, P.C., Finnemore, D.K., Bud’ko, S.L., Ostenson, J.E., Lapertot, G., Cunningham, C.E., and Petrovic, C., Phys. Rev. Lett. 86, 2423 (2001).CrossRefGoogle Scholar
6.Soltanian, S., Wang, X.L., Kusevic, I., Babic, E., Li, A.H., Liu, H.K., Collings, E.W., and Dou, S.X., Physica C 361, 84 (2001).Google Scholar
7.Jin, S., Mavoori, H., Bower, C., and R.B. van Dover, Nature (London) 411, 563 (2001).CrossRefGoogle Scholar
8.Suo, H-L., Beneduce, C., Dhalle´, M., Musolino, N., Genoud, J-Y., Flu¨kiger, R., Appl. Phys. Lett. 79, 3116 (2001).Google Scholar
9.Grasso, G., Malagoli, A., Ferdeghini, C., Roncallo, S., Braccini, V., Siri, A.S., and Cimberle, M.R., Appl. Phys. Lett. 79, 230 (2001).Google Scholar
10.Kumakura, H., Matsumoto, A., Fujii, H., and Togano, K., Appl. Phys. Lett. 79, 2435 (2001).Google Scholar
11.Fujii, H., Kumakura, H., and Togano, K., Physica C 363, 237 (2001).CrossRefGoogle Scholar
12.Goldacker, W., Schlachter, S.I.. Zimmer, S., and Reiner, H., Supercond. Sci. Technol. 14, 787 (2001).CrossRefGoogle Scholar
13.Takano, Y., Takeya, H., Fujii, H., Kumakura, H., Hatano, T., and Togano, K., Appl. Phys. Lett. 78, 2914 (2001).Google Scholar
14.Jung, C.U., Park, M-S., Kang, W.N., Kim, M-S., Lee, S.Y., and Lee, S-I., Physica C 353, 162 (2001).Google Scholar