Hostname: page-component-5f745c7db-hj587 Total loading time: 0 Render date: 2025-01-06T23:30:34.165Z Has data issue: true hasContentIssue false

Improved surface properties of polymer materials by multiple ion beam treatment

Published online by Cambridge University Press:  08 February 2011

E.H. Lee
Affiliation:
Oak Ridge National Laboratory, Metals and Ceramics Division, P.O. Box 2008, Oak Ridge, Tennessee 37831
M.B. Lewis
Affiliation:
Oak Ridge National Laboratory, Metals and Ceramics Division, P.O. Box 2008, Oak Ridge, Tennessee 37831
P.J. Blau
Affiliation:
Oak Ridge National Laboratory, Metals and Ceramics Division, P.O. Box 2008, Oak Ridge, Tennessee 37831
L.K. Mansur
Affiliation:
Oak Ridge National Laboratory, Metals and Ceramics Division, P.O. Box 2008, Oak Ridge, Tennessee 37831
Get access

Abstract

Ion beam treatment studies have been carried out to investigate the potential for improvements in surface-sensitive properties of polymers. Kapton, Teflon, Tefzel, and Mylar have been implanted with boron, nitrogen, carbon, silicon, and iron ions, singly or simultaneously with dual or triple beams. The implanted materials were characterized by optical microscopy, transmission electron microscopy, nano-hardness indentation, wear testing, scanning tunneling microscopy, x-ray analysis, nuclear reaction analysis, Fourier transform infrared spectroscopy, and Raman spectroscopy. Although the polymers showed a color change and varying degrees of measurable surface depression in the bombarded area, the implanted surface revealed substantial improvements in surface smoothness, hardness, and wear resistance. In particular, B, N, C triple-beam implanted Kapton showed over 30 times larger hardness than unimplanted material, making it more than three times harder than stainless steel. Sliding wear properties were characterized using an oscillating nylon or high carbon steel wear ball. Severe wear tracks were observed in virgin Kapton, but no appreciable wear was observed in ion implanted Kapton. Mechanisms underlying the improved surface properties are addressed.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Hegedus, C. R., Pulley, D. F., Spadadora, S. J., Eng, A. T., and Hirst, D. J., Advanced Materials & Processes 5, 62 (1989).Google Scholar
2Brown, W. L., Radiat. Eff. 98, 115 (1986).CrossRefGoogle Scholar
3Reichmanis, Elsa, The Effects of Radiation on High-Technology Polymers edited by Reichmanis, Elsa and O'Donnell, J. H., ACS Symposium Series 381, American Chemical Society, Washington, DC, Chap. 9, 132 (1989).CrossRefGoogle Scholar
4Hall, T. M., Wagner, A., and Thompson, L. F., J. Appl. Phys. 53 (6), 3997 (1982).CrossRefGoogle Scholar
5Eskildsen, S. S. and G. Sørensen, Nucl. Instrum. Methods in Physics Research B7/8, 481 (1985).CrossRefGoogle Scholar
6Arakawa, E. T., Williams, M. W., Ashley, J. C., and Painter, L. R., J. Appl. Phys. 52 (2), 3579 (1981).CrossRefGoogle Scholar
7Rustgi, M. L. and Pandey, L. N., Radiat. Eff. 105, 303 (1988).CrossRefGoogle Scholar
8Surendran, G., James, W. J., Brearley, W., and Hale, E. B., J. Appl. Polym. Sci., Appl. Polym. Symp. 38, 75 (1984).Google Scholar
9Hale, E. B., James, W. J., Sharma, A. K., and Yasuda, H. K., Ion Implant. Met., Proc. Int. Conf. Modif. Surf. Prop. Met. Ion Implant., 3rd, Meeting, 167 (1981), edited by Ashworth, V., Grant, V., Alexander, W., and Procter, R. P. M. (Pergamon, Oxford, U. K.).Google Scholar
10Ion Plating and Implantation, Proc. Conf. on The Applications of Ion Plating and Implantation to Materials, edited by Hofman, R. F., 3–5 June 1985, Atlanta, GA (ASM, Metals Park, OH).Google Scholar
11uIon Mixing and Surface Alloying, Proc. of the Workshop on Ion Mixing and Surface Layer Alloying, May 1983, edited by Nicolet, M. A. and Picraux, S. T. (Noyes Publications, Park Ridge, NJ).Google Scholar
12Ion Implantation for Materials Processing, edited by Smidt, F. A., Noyes Data Corporation, Park Ridge, NJ (1983).Google Scholar
13Reiser, Arnost, Photoreactive Polymers, The Science and Technology of Resists (John Wiley & Sons, New York, 1989).Google Scholar
14Venkatesan, T., Feldman, M., Wilkens, B. W., and Willenbrode, W. E., Jr., J. Appl. Phys. 55, 1212 (1984).CrossRefGoogle Scholar
15Lewis, M. B., Allen, W. R., Buhl, R. A., Packan, N. H., Cook, S. W., and Mansur, L. K., Nucl. Instrum. Methods in Physics Research B43, 243 (1989).CrossRefGoogle Scholar
16Oliver, W. C., MRS Bulletin Sept./Oct., 15 (1986).Google Scholar
17Lewis, M. B. and Lee, E. H., to be published in Nucl. Instrum. Methods in Physics Research, Section B.Google Scholar
18 R.DE Daubeny, P., Bunn, C. W., and Brown, C. J., Proc. R. Soc. London A226, 531 (1954).Google Scholar
19Shorshorov, M. Kh., Bulychev, S. I., and Alekhin, V. P., Sov. Phys. Dokl. 26 (8), 769 (1981).Google Scholar
20Loubet, J. L., Georges, J. M., Marchesini, O., and Meille, G., J. Tribol. 106, 43 (1984).CrossRefGoogle Scholar
21Oliver, W. C., McHargue, C. J., Farlow, G. C., and White, C. W., in Defect Properties and Processing of High-Technology Nonmetallic Materials, edited by Chen, Y., Kingery, W. D., and Stokes, R. J. (Mater. Res. Soc. Symp. Proc. 60, Pittsburgh, PA, 1986), p. 515.Google Scholar
22Doerner, M. F. and Nix, W. D., J. Mater. Res. 1, 601 (1986).CrossRefGoogle Scholar
23Pethica, J. B., Hutchings, R., and Oliver, W. C., Philos. Mag. A 48 (4), 593 (1983).CrossRefGoogle Scholar
24Joslin, D. L. and Oliver, W. C., J. Mater. Res. 5, 123 (1990).CrossRefGoogle Scholar
25Tsai, Hsiao-chu and Bogy, D. B., J. Vac. Sci. Technol. A 5 (6), 3287 (1987).CrossRefGoogle Scholar
26O'Donnell, J. H., The Effects of Radiation on High-Technology Polymers, edited by Reichmanis, Elsa and O'Donnell, J. H., ACS Symposium Series 381, American Chemical Society, Washington, DC, Chap. 1, 1 (1989).Google Scholar
27Venkatesan, T., Calcagno, L., Elman, B. S., and Foti, G., Ion Beam Modification of Insulators, edited by Mazzoldi, P. and Arnold, G. W. (Elsevier, New York, 1987), Chap. 8, p. 301.Google Scholar
28Masterton, W. L., Slowinski, E. J., and Stanitski, C. L., Chemical Principles, 6th ed. (Saunders College Publishing, New York, 1985), p. 281.Google Scholar
29Grimsditch, M. H. and Ramdas, A. K., Phys. Rev. Bll, 3139 (1975).CrossRefGoogle Scholar
30Lespade, P., Al-Jishi, R., and Dresselhaus, M. S., Carbon 20, 427 (1982).CrossRefGoogle Scholar
31Tuinstra, F. and Koenig, J. L., J. Chem. Phys. 53 (3), 1126 (1970).CrossRefGoogle Scholar
32Nemanich, R. J. and Solin, S. A., Phys. Rev. 20, 392 (1979).CrossRefGoogle Scholar
33Hark, S. K., Machonkin, M. A., Lansen, F., Slade, M. L., and Weinstein, B. A., AIP Conf. Proc. 120, 464 (1984).Google Scholar
34Venkatesan, T., Dynes, R. C., Wilkens, B., White, A. E., Gibson, J. M., and Hamm, R., Nucl. Instrum. Methods in Physics Research B229, 599 (1984).CrossRefGoogle Scholar