Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T14:01:41.441Z Has data issue: false hasContentIssue false

Improvement of mechanical properties of extruded AZX912 magnesium alloy using high-temperature solution treatment

Published online by Cambridge University Press:  02 October 2019

Xinsheng Huang*
Affiliation:
Structural Materials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Nagoya, Aichi 463-8560, Japan
Yasumasa Chino
Affiliation:
Structural Materials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Nagoya, Aichi 463-8560, Japan
Hironori Ueda
Affiliation:
Technical Headquarter Fuji Light Metal Co., Ltd., Tamana, Kumamoto 869-0912, Japan
Masashi Inoue
Affiliation:
Technical Headquarter Fuji Light Metal Co., Ltd., Tamana, Kumamoto 869-0912, Japan
Futoshi Kido
Affiliation:
Technical center Tobata Seisakusho Co., Ltd., Kitakyushu, Fukuoka 800-0211, Japan
Toshiharu Matsumoto
Affiliation:
Technical center Tobata Seisakusho Co., Ltd., Kitakyushu, Fukuoka 800-0211, Japan
*
a)Address all correspondence to this author. e-mail: huang-xs@aist.go.jp
Get access

Abstract

For achieving flame-retardant AZX912 magnesium alloy with superior mechanical properties, cast ingots were solution-treated at different temperatures of 420–525 °C prior to extrusion at 280 °C. With increasing solution treatment temperature, brittle Al2Ca intermetallic compound changed from a network-like morphology to a spheroidized shape, with an increase in hardness and became unbroken during extrusion. As the solution treatment temperature increased, cracking of Al2Ca particles during tensile deformation tended to be restricted due to hardening and spheroidizing behaviors, and tensile elongation of extruded alloys significantly enhanced from 11.2 to 19.2%. High mechanical strength was maintained with an improvement in ductility when increasing the solution treatment temperature up to 510 °C. The extruded alloy solution-treated at 510 °C exhibited a superior balance between mechanical strength and ductility, with a high ultimate tensile strength of 367 MPa and a good elongation of 16.8%.

Type
Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

b)

Present Address: Technical Headquarter Fuji Light Metal Co., Ltd., Tamana, Kumamoto 869-0912, Japan.

References

Pan, F.S., Yang, M.B., and Chen, X.H.: A review on casting magnesium alloys: Modification of commercial alloys and development of new alloys. J. Mater. Sci. Technol. 32, 1211 (2016).CrossRefGoogle Scholar
Czerwinski, F.: Controlling the ignition and flammability of magnesium for aerospace applications. Corros. Sci. 86, 1 (2014).CrossRefGoogle Scholar
Sakamoto, M., Akiyama, S., and Ogi, K.: Suppression of ignition and burning of molten Mg alloys by Ca bearing stable oxide film. J. Mater. Sci. Lett. 16, 1048 (1997).CrossRefGoogle Scholar
Han, G.S., Chen, D., Chen, G., and Huang, J.H.: Development of non-flammable high strength extruded Mg–Al–Ca–Mn alloys with high Ca/Al ratio. J. Mater. Sci. Technol. 34, 2063 (2018).CrossRefGoogle Scholar
Akiyama, S., Ueno, H., Sakamoto, M., Hirai, H., and Kitahara, A.: Development of noncombustible magnesium alloys. Mater. Jpn. 39, 72 (2000).CrossRefGoogle Scholar
Huang, X.S., Chino, Y., Yuasa, M., Ueda, H., Inoue, M., Kido, F., and Matsumoto, T.: Microstructure and mechanical properties of AZX912 magnesium alloy extruded at different temperatures. Mater. Sci. Eng., A 679, 162 (2017).CrossRefGoogle Scholar
Zhang, Y., Wu, G.H., Liu, W.C., Zhang, L., Pang, S., Wang, Y.D., and Ding, W.J.: Effects of processing parameters and Ca content on microstructure and mechanical properties of squeeze casting AZ91–Ca alloys. Mater. Sci. Eng., A 595, 109 (2014).CrossRefGoogle Scholar
Zhang, Y., Wu, G.H., Liu, W.C., Zhang, L., Pang, S., and Ding, W.J.: Preparation and rheo-squeeze casting of semi-solid AZ91–2 wt% Ca magnesium alloy by gas bubbling process. J. Mater. Res. 30, 825 (2015).CrossRefGoogle Scholar
Babout, L., Maire, E., and Fougeres, R.: Damage initiation in model metallic materials: X-ray tomography and modelling. Acta Mater. 52, 2475 (2004).CrossRefGoogle Scholar
Pineau, A., Benzerga, A.A., and Pardoen, T.: Failure of metals I: Brittle and ductile fracture. Acta Mater. 107, 424 (2016).CrossRefGoogle Scholar
Saito, N., Suzuki, K., Fukuda, Y., Ito, T., Noda, M., Gonda, Y., and Chino, Y.: Effects of Al concentration and Zn addition on microstructure and mechanical properties of Mg–Al–(Zn)–Ca series magnesium alloy plates. J. Jpn. Inst. Light Met. 66, 246 (2016).CrossRefGoogle Scholar
Saito, N., Suzuki, K., Noguchi, M., Ito, T., Noda, M., Gonda, Y., and Chino, Y.: Effects of microstructure on plate bending fatigue properties of rolled Mg–6% Al–1% Zn–1% Ca plates. J. Jpn. Inst. Light Met. 67, 625 (2017).CrossRefGoogle Scholar
Ma, E. and Zhu, T.: Towards strength–ductility synergy through the design of heterogeneous nanostructures in metals. Mater. Today 20, 323 (2017).CrossRefGoogle Scholar
Wang, M., He, B.B., and Huang, M.X.: Strong and ductile Mg alloys developed by dislocation engineering. J. Mater. Sci. Technol. 35, 394 (2019).CrossRefGoogle Scholar
Wang, X.J., Xu, D.K., Wu, R.Z., Chen, X.B., Peng, Q.M., Jin, L., Xin, Y.C., Zhang, Z.Q., Liu, Y., Chen, X.H., Chen, G., Deng, K.K., and Wang, H.Y.: What is going on in magnesium alloys? J. Mater. Sci. Technol. 34, 245 (2018).CrossRefGoogle Scholar
Prasad, Y.V.R.K. and Rao, K.P.: Effect of homogenization on the hot deformation behavior of cast AZ31 magnesium alloy. Mater. Des. 30, 3723 (2009).CrossRefGoogle Scholar
Xie, H., Jia, L., Zhang, J.L., Wang, Z.M., and , Z.L.: Formation of Al2Ca phase in as-extruded X20 magnesium alloy by solution treatment. Rare Met. Mater. Eng. 41, 958 (2012).CrossRefGoogle Scholar
Ragani, J., Donnadieu, P., Tassin, C., and Blandin, J.J.: High-temperature deformation of the γ-Mg17Al12 complex metallic alloy. Scr. Mater. 65, 253 (2011).CrossRefGoogle Scholar
Mathur, H.N., Maier-Kiener, V., and Korte-Kerzel, S.: Deformation in the γ-Mg17Al12 phase at 25–278 °C. Acta Mater. 113, 221 (2016).CrossRefGoogle Scholar
Zhao, M.C., Liu, M., Song, G.L., and Atrens, A.: Influence of homogenization annealing of AZ91 on mechanical properties and corrosion behavior. Adv. Eng. Mater. 10, 93 (2008).CrossRefGoogle Scholar
Koltygin, A.V., Bazhenov, V.E., Belova, E.A., and Nikitina, A.A.: Development of a magnesium alloy with good casting characteristics on the basis of Mg–Al–Ca–Mn system, having Mg–Al2Ca structure. J. Magnesium Alloys 1, 224 (2013).CrossRefGoogle Scholar
Hort, N., Huang, Y.D., and Kainer, K.U.: Intermetallics in magnesium alloys. Adv. Eng. Mater. 8, 235 (2006).CrossRefGoogle Scholar
Ito, T., Yanagihara, S., Noda, M., and Mori, H.: Effect of cast structure and forging conditions on upset forgeability of a flame-resistant magnesium alloys. J. Jpn. Inst. Light Met. 65, 611 (2015).CrossRefGoogle Scholar
Suzuki, K., Saito, N., Huang, X.S., Nakatsugawa, I., and Chino, Y.: Effects of alloy compositions on ignition temperature of magnesium alloys. J. Jpn. Inst. Light Met. 69, 46 (2019).CrossRefGoogle Scholar
Li, Z.F., Dong, J., Zeng, X.Q., Lu, C., and Ding, W.J.: Influence of Mg17Al12 intermetallic compounds on the hot extruded microstructures and mechanical properties of Mg–9Al–1Zn alloy. Mater. Sci. Eng., A 466, 134 (2007).CrossRefGoogle Scholar
Zhang, L., Deng, K.K., Nie, K.B., Xu, F.J., Su, K., and Lian, W.: Microstructures and mechanical properties of Mg–Al–Ca alloys affected by Ca/Al ratio. Mater. Sci. Eng., A 636, 279 (2015).CrossRefGoogle Scholar
Zubair, M., Sandlöbes, S., Wollenweber, M.A., Kusche, C.F., Hildebrandt, W., Broeckmann, C., and Korte-Kerzel, S.: On the role of Laves phases on the mechanical properties of Mg–Al–Ca alloys. Mater. Sci. Eng., A 756, 272 (2019).CrossRefGoogle Scholar
Fukuchi, M. and Watanabe, K.: Temperature and composition dependence of hardness, resistivity and thermoelectric power of the γ-phase in the Al–Mg system. J. Japan Inst. Met. Mater. 39, 493 (1975).CrossRefGoogle Scholar
Chang, Y.A., Pike, L.M., Liu, C.T., Bilbrey, A.R., and Stone, D.S.: Correlation of the hardness and vacancy concentration in FeAl. Intermetallics 1, 107 (1993).CrossRefGoogle Scholar
Chen, K.C., Allen, S.M., and Livingston, J.D.: Factors affecting the room-temperature mechanical properties of TiCr2-base Laves phase alloys. Mater. Sci. Eng., A 242, 162 (1998).CrossRefGoogle Scholar
Chen, K.C., Chu, F., Kotula, P.G., and Thoma, D.: HfCo2 Laves phase intermetallics—Part II: Elastic and mechanical properties as a function of composition. Intermetallics 9, 785 (2001).CrossRefGoogle Scholar
Liu, Y., Wang, N.N., Wang, J.W., Ma, B.C., and Zhao, D.Q.: Investigation of the crystallographic structure and orientations of the Al2Ca phase in a Mg–Al–Ca–Mn alloy. Mater. Charact. 142, 377 (2018).CrossRefGoogle Scholar
Fredriksson, H. and Akerlind, U.: Solidification and Crystallization Processing in Metals and Alloys, 1st ed. (John Wiley & Sons, Hoboken, 2012); p. 42.CrossRefGoogle Scholar
Li, C.D., Wang, X.J., Liu, W.Q., Wu, K., Shi, H.L., Ding, C., Hu, X.S., and Zheng, M.Y.: Microstructure and strengthening mechanism of carbon nanotubes reinforced magnesium matrix composite. Mater. Sci. Eng., A 597, 264 (2014).CrossRefGoogle Scholar
Xu, S.W., Kamado, S., and Honma, T.: Effect of homogenization on microstructures and mechanical properties of hot compressed Mg–9Al–1Zn alloy. Mater. Sci. Eng., A 528, 2385 (2011).CrossRefGoogle Scholar
Watanabe, H., Yamaguchi, M., Takigawa, Y., and Higashi, K.: Mechanical properties of Mg–Al–Ca alloy processed by hot extrusion. Mater. Sci. Eng., A 454–455, 384 (2007).CrossRefGoogle Scholar
Masaki, K., Ochi, Y., Kakiuchi, T., Kurata, K., Hirasawa, T., Matsumura, T., Takigawa, Y., and Higashi, K.: High cycle fatigue property of extruded non-combustible Mg alloy AMCa602. Mater. Trans. 49, 1148 (2008).CrossRefGoogle Scholar
Hristov, V.S. and Yoshida, K.: Effects of chemical composition on drawability and mechanical properties of magnesium alloy wires. Proc. Manuf. 15, 341 (2018).Google Scholar
Li, Z.T., Qiao, X.G., Xu, C., Kamado, S., Zheng, M.Y., and Luo, A.A.: Ultrahigh strength Mg–Al–Ca–Mn extrusion alloys with various aluminum contents. J. Alloys Compd. 792, 130 (2019).CrossRefGoogle Scholar