Published online by Cambridge University Press: 21 September 2020
A–Ar–A-type small molecule (SM) of Py-2DTOBT and Py-2DTOBTPh with an Ar(A–D)2 framework were synthesized, in which 2,7-pyrene (Py) and alkoxyl-substituted benzothiadiazole (OBT) were, respectively, used as the central aryl (Ar) and arm acceptor (A), while 3-phenanthrene (Ph) was used as a terminal donor (D) in Py-2DTOBTPh. By comparison with the parent SM of Py-2DTBT, where 2,7-pyrene (Py) and benzothiadiazole (BT) were used as the central aryl (Ar) and arm acceptor (A), the effects of non-covalent interactions and the terminal group on optical, electrochemical, and photovoltaic properties were investigated. The gradually improved photovoltaic performances were observed among Py-2DTBT, Py-2DTOBT, and Py-2DTOBTPh based organic solar cells. A power conversion efficiency (PCE) of 2.83% was obtained in the Py-2DTOBTPh/PC71BM-based device, which is a 53% improvement related to that of Py-2DTOBT and three times enhanced related to that of Py-2DTBT(Py-2DTOBT:PCE of 1.86%, Py-2DTBT:PCE of 0.74%).
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.