Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-10T21:09:22.489Z Has data issue: false hasContentIssue false

In situ Observation of Solid–liquid Interfaces by Transmission Electron Microscopy

Published online by Cambridge University Press:  01 July 2005

H. Saka*
Affiliation:
Department of Quantum Engineering, Nagoya University, Nagoya 464-8603, Japan
K. Sasaki
Affiliation:
Department of Quantum Engineering, Nagoya University, Nagoya 464-8603, Japan
S. Tsukimoto
Affiliation:
Department of Quantum Engineering, Nagoya University, Nagoya 464-8603, Japan
S. Arai
Affiliation:
1MV Electron Microscope Laboratory, Eco-Topia Science Institute, Nagoya University, Nagoya 464-8603, Japan
*
a) Address all correspondence to this author. e-mail: saka@numse.nagoya-u.ac.jp
Get access

Abstract

Recent progress in in situ observation of solid–liquid interfaces by means of transmission electron microscopy, carried out by the Nagoya group, was reviewed. The results obtained on pure materials are discussed based on Jackson's theory. The structure of the solid–liquid interfaces of eutectic alloys was also observed. The in situ observation technique of solid–liquid interface is applied to industrially important reactions which include liquid phases.

Type
Reviews
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Howe, J.M.: Interfaces in Materials (John Wiley, New York, 1997).Google Scholar
2Jackson, K.A. In Liquid Metals and Solidification(ASM, Cleveland, OH, 1958), p. 174.Google Scholar
3Temkin, D.E. Molecular roughness of the crystal-melt boundary, in Crystallization Process (Consultant Bureau, New York, NY, 1966), p. 15.CrossRefGoogle Scholar
4Thomas, L.J. and Westwater, J.W.: Chem. Engng. Prog. Symp. Ser. 59, 155 (1963).Google Scholar
5Nittono, O., Ogawa, T., Gong, S.K. and Nagakura, S.: In situ observation on melt growth process of tin crystal by means of synchrotron x-ray tipography J. Appl. Phys. Jpn. 23, L581 (1984).CrossRefGoogle Scholar
6Kobayashi, T. and Imura, T.: In situ heating device for real-time x-ray topography on crystal-growth from the melt. J. Appl. Phys. Jpn. 23, L632 (1984).CrossRefGoogle Scholar
7Glicksman, M.E. and Vold, C.L.: Observation of solidification and melting phenomina in metals usingthe electron microscope. Acta Metall. 16, 1409 (1967).CrossRefGoogle Scholar
8Sugawara, S. and Watanabe, J.: Observation of melt growth process of Bi and Sn thin films. Microsc. Microanal. Microstr. 4, 279 (1993).CrossRefGoogle Scholar
9Saka, H., Sakai, A., Kamino, T. and Imura, T.: In situ HREM observation of solid–liquid interface. Philos. Mag. 52, L29 (1985).CrossRefGoogle Scholar
10Howe, J. and Saka, H: In situ transmission electron microscopy studies of the solid–liquid interface. MRS Bull. 29, 951 (2004).CrossRefGoogle Scholar
11Kamino, T. and Saka, H: A newly developed high resolution hot stage and its application to materials characterization. Microsc. Microanal. Microstr. 4, 127 (1993).CrossRefGoogle Scholar
12Mori, H., Yasuda, H. and Kamino, T.: High-resolution electron-microscopy study of spontaneous alloying in gold clusters. Philos. Mag. Lett. 68, 279 (1994).CrossRefGoogle Scholar
13Arai, S., Tsukimoto, S. and Saka, H.: In situ transmission electron microscope observation of melting of aluminum particles. Microsc. Microanal. 4, 264 (1998).CrossRefGoogle ScholarPubMed
14Sasaki, K. and Saka, H.: In situ high-resolution electron microscopy observation of the melting process of In particles embedded in an Al matrix. Philos. Mag. A 63, 1207 (1991).CrossRefGoogle Scholar
15Saka, H., Nishikawa, Y. and Imura, T.: Melting temperature of In particles embedded in an Al matrix. Philos. Mag. A 57, 895 (1988).CrossRefGoogle Scholar
16Masasalski, T.B., Murray, J.L., Beennett, L.H. and Baker, H.: Binary Phase Diagrams (ASM, Metals Park, OH, 1986).Google Scholar
17Ohashi, T., Kuroda, K. and Saka, H.: In situ electron microscopy of melting and solidification of In particles embedded in an Fe matrix. Philos. Mag. B 65, 1041 (1992).CrossRefGoogle Scholar
18Senda, Y., Sasaki, K. and Saka, H.: Melting temperature of a wedge-shaped thin crystal of tin. Philos. Mag. 84, 2635 (2004).CrossRefGoogle Scholar
19Arai, S., Senda, Y., Sasaki, K. and Saka, H.: unpublished.Google Scholar
20Sasaki, K. and Saka, H. In-situ high resolution transmission electron microscopy of solid–liquid interface of alumina, in Amorphous and Crystalline Insulating Thin Films—1996, edited by Warren, W.L., Devine, R.A.B., Matsumura, M., Cristoloveanu, S., Homma, Y., and Kanicki, J. (Mater. Res. Soc. Symp. Proc. 446 Pittsburgh, PA, 1997), p. 185.Google Scholar
21Sasaki, K. and Saka, H.: unpublished.Google Scholar
22Ibuka, H., Matsuki, H. and Saka, H.: In situ observation of melting and solidification in eutectic Pb–Sn. J. Electron Microsc. 48, 1093 (1999).Google Scholar
23Saka, H., Arai, S., Muto, S., Miyai, H. and Tsukimoto, S.: In situ observation of melting and solidification in Advances in Materials Problem Solving with the Electron Microscope, edited by Bentley, J., Allen, C., Dahmen, U., and Petrov, I. (Mater. Res. Soc. Symp. Proc. 589, Warrendale, PA, 2001), p. 117.Google Scholar
24Arai, S., Tsukimoto, S., Miyai, H. and Saka, H.: High-resolution in-situ transmission electron microscopy observation of a solid– liquid interface in the Al–Si system. J. Electron Microsc. 48, 317 (1999).CrossRefGoogle Scholar
25Arai, S., Tsukimoto, S., Miyai, H. and Saka, H.: Direct observation of the atomic structure in a solid–liquid interface. Microsc. Microanal. 6, 358 (2000).CrossRefGoogle Scholar
26Arai, S., Tsukimoto, S. and Saka, H.: In situ HREM observation of nucleation and growth of nanotwins beneath the solid–liquid interface in Si. J. Electron Microsc. 52, 79 (2003).CrossRefGoogle ScholarPubMed
27Tsukimoto, S., Arai, S. and Saka, H.: unpublished.Google Scholar
28Tsukimoto, S., Arai, S. and Saka, H.: High-resolution in situ electron microscopy of a silicon surface modification by molten aluminium at high temperatures. Philos. Mag. Lett. 79, 913 (1999).CrossRefGoogle Scholar
29Tsukimoto, S., Arai, S., Konno, M., Kamino, T., Sasaki, K. and Saka, H.: In situ high resolution electron microscopy/electron energy loss spectroscopy observation of wetting of a Si surface by molten Al. J. Microsc. 203, 17 (2001).CrossRefGoogle ScholarPubMed
30Kato, T, Nunome, K., Kaneko, K. and Saka, H.: Formation of the ζ phase at an interface between an Fe substrate and a molten 0.2 mass% Al–Zn during galvannealing. Acta Mater. 48, 2257 (2000).CrossRefGoogle Scholar
31Kato, T, Nunome, K., Morimoto, Y., Nishimura, K. and Saka, H.: In-situ high-voltage electron microscopy observations of reactions between molten Zn and Fe. Philos. Mag. Lett. 80, 187 (2000).CrossRefGoogle Scholar
32Matsuki, H., Ibuka, H. and Saka, H.: TEM observation of interfaces in a solder joint in a semiconductor device. Sci. Technol. Adv. Mater. 3, 261 (2002).CrossRefGoogle Scholar
33Torazawa, N., Arai, S., Takase, Y., Sasaki, K. and Saka, H.: Tranmission electron microscopy of interfaces in joints between Pb-free solders and electroless Ni–P. Mater. Trans. 44, 1438 (2003).CrossRefGoogle Scholar
34Chang, J., Sakai, T. and Saka, H.: Melting temperature of a conical needle-shaped Sn. Philos. Mag. Lett. (in press).Google Scholar
35Chang, J., Sakai, T. and Saka, H.: Depressed melting temperature of needle shaped metals. Proc. 8APEM 677 (2004).Google Scholar