Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-04T02:45:54.022Z Has data issue: false hasContentIssue false

In situ synchrotron radiation monitoring of phase transitions during microwave heating of Al–Cu–Fe alloys

Published online by Cambridge University Press:  31 January 2011

Sébastien Vaucher*
Affiliation:
EMPA, Swiss Federal Laboratories for Materials Science and Technology, CH-3602 Thun, Switzerland
Radu Nicula
Affiliation:
EMPA, Swiss Federal Laboratories for Materials Science and Technology, CH-3602 Thun, Switzerland; and Institute of Physics, University of Rostock, D-18055 Rostock, Germany
José-Manuel Català-Civera
Affiliation:
Polytechnical University of Valencia, School of Telecommunication, Camino de Vera s/n E-46022 Valencia, Spain
Bernd Schmitt
Affiliation:
Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
Bruce Patterson
Affiliation:
Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
*
a)Address all correspondence to this author. e-mail: sebastien.vaucher@empa.ch
Get access

Abstract

The effect of rapid microwave heating has so far been evaluated mainly by comparing the state of materials before and after microwave exposure. Yet, further progress critically depends on the ability to follow the evolution of materials during ultrafast heating in real time. We describe the first in situ time-resolved monitoring of solid-state phase transitions during microwave heating of metallic powders using wide-angle synchrotron radiation diffraction. Single-phase Al–Cu–Fe quasicrystal powders were obtained by microwave heating of nanocrystalline alloy precursors at 650 °C in <20 s.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Roy, R.Agrawal, D.: The new science of microwave−materials interactions: The role of separated e and h fields and its real world applications in Proceedings of the 6th Symposium on Microwave Applications and Related Fields, November 2–4, 2006, Oyaki-City, JapanGoogle Scholar
2Seal, S., Kuiry, S.C., Georgieva, P.Agarwal, A.: Manufacturing nanocomposite parts: Present status and future challenges. MRS Bull. 29(1), 16 2004CrossRefGoogle Scholar
3Shen, Z., Zhao, Z., Peng, H.Nygren, M.: Formation of tough interlocking microstructures in silicon nitride ceramics by dynamic ripening. Nature 417, 266 2002CrossRefGoogle ScholarPubMed
4Katz, J.D.: Microwave sintering of ceramics. Annu. Rev. Mater. Sci. 22, 153 1992CrossRefGoogle Scholar
5Materials Research Advisory Board Microwave Processing of Materials National Research Council Publication NMAB-473, National Academy Press 1994Google Scholar
6Clark, D.E., Folz, D.C., Folgar, C.Mahmoud, M.: Microwave Solutions for Ceramic Engineers The American Ceramics Society ACerS Inc., Westerville, OH 2005Google Scholar
7Bykov, Yu.V., Rybakov, K.I.Semenov, V.E.: High-temperature microwave processing of materials. J. Phys. D: Appl. Phys. 34, R55 2001CrossRefGoogle Scholar
8Whittaker, A.G., Harrison, A., Oakley, G.S., Youngson, I.D., Heenan, R.K.King, S.M.: Preliminary experiments on apparatus for in situ studies of microwave-driven reactions by small angle neutron scattering. Rev. Sci. Instrum. 72, 173 2001CrossRefGoogle Scholar
9Harrison, A., Ibberson, R., Robb, G., Whittaker, G., Wilson, C.Youngson, D.: In situ neutron diffraction studies of single crystals and powders during microwave irradiation. Faraday Discuss. 122, 363 2002CrossRefGoogle Scholar
10Günter, M.M., Korte, C., Brunauer, G., Boysen, H., Lerch, M.Suard, E.: In situ high temperature neutron diffraction study of Sr/Mg-doped lanthanum gallate superionic conductors under microwave irradiation. Z. Anorg. Allg. Chem. 631, 1277 2005CrossRefGoogle Scholar
11Robb, G.R., Harrison, A.Whittaker, A.G.: Temperature-resoved, in-situ powder x-ray diffraction of silver iodide under microwave irradiation. Phys. Chem. Comm. 5, 135 2002Google Scholar
12Vaucher, S., Catala-Civera, J-M., Sarua, A., Pomeroy, J.Kuball, M.: Phase selectivity of microwave heating evidenced by Raman spectroscopy. J. Appl. Phys. 99, 113505 2006CrossRefGoogle Scholar
13Nesbitt, A., Navabpour, P., Degamber, B., Nightingale, C., Mann, T., Fernando, G.Day, R.J.: Development of a microwave calorimeter for simultaneous thermal analysis, infrared spectroscopy and dielectric measurements. Meas. Sci. Technol. 15, 2313 2004CrossRefGoogle Scholar
14Freeman, S.A., Booske, J.H.Cooper, R.F.: Microwave field enhancement of charge transport in sodium chloride. Phys. Rev. Lett. 74, 2042 1995CrossRefGoogle ScholarPubMed
15Booske, J.H., Cooper, R.F.Freeman, S.A.: Microwave enhanced reaction kinetics in ceramics. Mater. Res. Innovations 1, 77 1997CrossRefGoogle Scholar
16Rybakov, K.I.Semenov, V.E.: Mass transport in ionic crystals induced by the ponderomotive action of a high-frequency electric field. Phys. Rev. B 52, 3030 1995CrossRefGoogle ScholarPubMed
17Cheng, J., Roy, R.Agrawal, D.: Experimental proof of major role of magnetic losses in microwave heating of metal and metallic composites. J. Mater. Sci. Lett. 20, 1561 2001CrossRefGoogle Scholar
18Roy, R., Peelamedu, P.D., Cheng, J.P., Grimes, C.Agrawal, D.: Major phase transformations and magnetic property changes caused by electromagnetic fields at microwave frequencies. J. Mater. Res. 17(12), 3008 2002CrossRefGoogle Scholar
19Roy, R., Peelamedu, P.D., Hurtt, L., Cheng, J.P.Agrawal, D.: Definitive experimental evidence for microwave effects: Radically new effects of separated E and H fields, such as decrystallization of oxides in seconds. Mater. Res. Innovations 6, 128 2002CrossRefGoogle Scholar
20Roy, R., Agrawal, D., Cheng, J.Gedevanshvili, S.: Full sintering of powdered-metal bodies in a microwave field. Nature 399, 668 1999CrossRefGoogle Scholar
21Shechtman, D., Blech, I., Gratias, D.Cahn, J.: Metallic phase with long range orientational order and no translational symmetry. Phys. Rev. Lett. 53, 1951 1984CrossRefGoogle Scholar
22Trebin, H-R.: ed. Quasi-crystals Wiley-VCH Weinheim 2003Google Scholar
23Janot, Chr.: The properties and applications of quasi-crystals. Europhys. News 27, 60 1996CrossRefGoogle Scholar
24Sordelet, D.J., Dubois, J.M. ed. Quasi-crystals. MRS Bull. 22 (11), 1997Google Scholar
25Dubois, J.M.: Useful Quasi-crystals World Scientific Publishing Singapore 2003Google Scholar
26Huttunen-Saarivirta, E.: Microstructure, fabrication and properties of quasi-crystalline Al–Cu–Fe alloys: A review. J. Alloys Compd. 363, 150 2004CrossRefGoogle Scholar
27Tcherdyntsev, V.V., Kaloshkin, S.D., Salimon, A.I., Leonova, E.A., Eckert, J., Schurack, F., Rogozin, V.D., Pisarev, S.P.Trykov, Y.P.: Al–Cu–Fe quasi-crystalline phase formation by mechanical alloying. Mater. Manufact. Proc. 17, 825 2002CrossRefGoogle Scholar
28Nicula, R., Stir, M., Turquier, F.Burkel, E.: Single-phase bulk Al–Cu–Fe quasi-crystals by field-assisted sintering. Mater. Sci. Eng., A (doi:10.1016/j.msea.2007.01.163, in press)Google Scholar
29Dube, D.C., Ramesh, P.D., Cheng, J., Lanagan, M.T., Agrawal, D.Roy, R.: Experimental evidence of redistribution of fields during processing in a high-power microwave cavity. Appl. Phys. Lett. 85(16), 3632 2004CrossRefGoogle Scholar
30Patterson, B.D., Brönnimann, Ch., Maden, D., Gozzo, F., Groso, A., Schmitt, B., Stampanoni, M.Wilmott, P.R.: The materials science beamline at the Swiss Light Source. Nucl. Instrum. Methods Phys. Rev., Sect. B 238, 224 2005CrossRefGoogle Scholar
31Schmitt, B., Brönnimann, Ch., Eikenberry, E.F., Gozzo, F., Hörmann, C., Horisberger, R.Patterson, B.: Mythen detector system. Nucl. Instrum. Methods Phys. Rev., Sect. A 501, 267 2003CrossRefGoogle Scholar
32Cahn, J.W., Shechtman, D.Gratias, D.: Indexing of icosahedral quasiperiodic crystals. J. Mater. Res. 1, 13 1986CrossRefGoogle Scholar
33Otterstein, E., Nicula, R., Bednarcik, J., Stir, M.Burkel, E.: In situ time-resolved x-ray diffraction investigation of the ω → ψ transition in Al–Cu–Fe quasi-crystal-forming alloys. Mater. Sci. Forum 558-559, 943 2007CrossRefGoogle Scholar
34Janot, Chr.: Quasi-crystals: A Primer Oxford University Press New York 1992CrossRefGoogle Scholar
35Quinquandon, M., Quivy, A., Devaud, J., Faudot, F., Lefebvre, S., Bessiere, M.Calvayrac, Y.: Quasi-crystal and approximant structures in the Al–Cu–Fe system. J. Phys.: Condens. Matter 8, 2487 1996Google Scholar
36Quivy, A., Lefebvre, S., Soubeyroux, J.L., Filhol, A.Ibberson, R.M.: High-resolution time-of-flight measurements of the lattice parameter and thermal expansion of the icosahedral phase Al62Cu25.5Fe12.5. J. Appl. Crystallogr. 27, 1010 1994CrossRefGoogle Scholar
37Korsunsky, A.M., Salimon, A.I., Pape, I., Polyakov, A.M.Fitch, A.N.: The thermal expansion coefficient of mechanically alloyed Al–Cu–Fe quasi-crystalline powders. Scripta Mater. 44, 217 2001CrossRefGoogle Scholar