Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-14T19:23:36.324Z Has data issue: false hasContentIssue false

In situ transmission electron microscopy and spectroscopy studies of interfaces in Li ion batteries: Challenges and opportunities

Published online by Cambridge University Press:  31 January 2011

C.M. Wang*
Affiliation:
Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352
W. Xu
Affiliation:
Energy and Environmental Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352
J. Liu
Affiliation:
Fundamental and Computational Science Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352
D.W. Choi
Affiliation:
Energy and Environmental Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352
L.V. Saraf
Affiliation:
Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352
Z.G. Yang
Affiliation:
Energy and Environmental Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352
D.R. Baer
Affiliation:
Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352
N. Salmon
Affiliation:
Hummingbird Scientific, Lacey, Washington 98516
*
a)Address all correspondence to this author. e-mail: Chongmin.Wang@pnl.gov
Get access

Abstract

Transmission electron microscopy (TEM) and spectroscopy have been evolved to a stage such that they can be routinely used to probe the structure and composition of the materials with the resolution of a single atomic column. However, a direct in situ TEM observation of structural evolution of the materials in a lithium ion battery during dynamic operation of the battery has never been reported. In this paper, we report the results of exploring the in situ TEM techniques for observation of interfaces in the lithium ion battery during the operation of the battery. A miniature battery was fabricated using a single nanowire and an ionic liquid electrolyte. The structure and composition of the interface across the anode and the electrolyte was studied using TEM imaging, electron diffraction, and electron energy-loss spectroscopy. In addition, we also explored the possibilities of carrying out in situ TEM studies of lithium ion batteries with a solid state electrolyte.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Tarascon, J.M., Armand, M.Issues and challenges facing rechargeable lithium batteries. Nature 414, 359 (2001)CrossRefGoogle ScholarPubMed
2.Dedryvere, R., Martinez, H., Leroy, S., Lemordant, D., Bonhomme, F., Biensan, P., Gonbeau, D.Surface film formation on electrodes in a LiCoO2/graphite cell: A step by step XPS study. J. Power Sources 174, 462 (2007)Google Scholar
3.Kong, F., Kostecki, R., Nadeau, G., Song, X., Zaghib, K., Kinoshita, K., McLarnon, F.In situ studies of SEI formation. J. Power Sources 97–98, 58 (2001)Google Scholar
4.Bryngelsson, H., Stjerndahl, M., Gustafsson, T., Edstrom, K.How dynamic is the SEI? J. Power Sources 174, 970 (2007)Google Scholar
5.Chen, G.Y., Song, X.Y., Richardson, T.J.Electron microscopy study of the LiFePO4 to FePO4 phase transition. Electrochem. Solid-State Lett. 9, (6)A295 (2006)CrossRefGoogle Scholar
6.Eswaramoorthy, S.K., Howe, J.M., Muralidharan, G.In situ determination of the nanoscale chemistry and behavior of solid-liquid systems. Science 318, 1437 (2007)CrossRefGoogle ScholarPubMed
7.Brazier, A., Dupont, L., Dantras-Laffront, L., Kuwata, N., Kawamura, J., Tarascon, J.M.First cross-section observation of an all solid-state lithium-ion “nanobattery” by tramsmission electron microscopy. Chem. Mater. 20, 2352 (2008)Google Scholar
8.Lux, S.F., Schmuck, M., Rupp, B., Kern, W., Appetecchi, G.B., Passerini, S., Winter, M., Balducci, A.Mixtures of ionic liquids in combination with graphite electrodes: The role of Li-salt. ECS Transactions 16, (35)45 (2009)Google Scholar
9.Lewandowski, A., Świderska-Mocek, A.Properties of the graphite-lithium anode in N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide as an electrolyte. J. Power Sources 171, (2)938 (2007)CrossRefGoogle Scholar
10.Retoux, R., Brousse, T., Schleich, D.M.High-resolution electron microscopy investigation of capacity fade in SnO2 electrodes for lithium-ion batteries. J. Electrochem. Soc. 146, (7)2472 (1999)Google Scholar
11.Delmas, C., Maccario, M., Croguennec, L., Cras, F.L., Weill, F.Lithium deintercalation in LiFePO4 nanoparticles via a Domoni-Cascade model. Nat. Mater. 7, 665 (2008)CrossRefGoogle Scholar
12.Gibot, P., Casas-Cabanas, M., Laffont, L., Levasseur, S., Carlach, P., Hamelet, S., Tarascon, J.M., Masquelier, C.Room-temperature single-phase Li insertion/extraction in nanoscale LixFePO4. Nat. Mater. 77, 741 (2008)CrossRefGoogle Scholar
13.Laffont, L., Delacourt, C., Gibot, P., Wu, M.Y., Kooyman, P., Masquelier, C., Marie Tarascon, J.Study of the LiFePO4/FePO4 two-phase system by high-resolution electron energy loss spectroscopy. Chem. Mater. 18, 5520 (2006)Google Scholar
14.Mauchamp, V., Moreau, P., Moncondut, L., Doublet, M.L., Boucher, F., Ouvrard, G.Determination of lithium insertion sites in LixTiP4 (x = 2–11) by electron energy-loss spectroscopy. J. Phys. Chem. C 111, 3996 (2007)CrossRefGoogle Scholar
15.Wang, D., Choi, D., Yang, Z., Viswanathan, V.V., Nie, Z., Wang, C.M., Song, Y., Zhang, J.G., Liu, J.Synthesis and Li ion insertion properties of highly crystalline mesoporous rutile TiO2. Chem. Mater. 20, 3435 (2008)Google Scholar
16.Hightower, A., Ahn, C.C., Fultz, B., Rez, P.Electron energy-loss spectroscopy on lithiated graphite. Appl. Phys. Lett. 77, (2)238 (2000)CrossRefGoogle Scholar
17.Chen, G., Li, C., Xu, X., Li, J., Kolb, U.Electronic structure of Li(CO0.7-xAl0.3)MgxO2 studied by electron energy-loss spectroscopy. Appl. Phys. Lett. 83, (6)1142 (2003)Google Scholar
18.Gabrisch, H., Yazami, R., Fultz, B.The character of dislocationsin LiCoO2. Electrochem. Solid-State Lett. 5, (6)A111 (2002)CrossRefGoogle Scholar
19.Nishimura, S.I., Kobayashi, G., Ohoyama, K., Kanno, R., Yashima, M., Yamada, A.Experimental visulization of lithium diffusion in LixFePO4. Nat. Mater. 7, 707 (2008)Google Scholar
20.Harutyunyan, A.R., Chen, G.G., Paronyan, T.M., Pigos, E.M., Kuznetsov, O.A., Hewaparakrama, K., Kim, S.M., Zakharov, D., Stach, E.A., Sumanasekera, G.U.Preferential growth of single-walled carbon nanotubes with metallic conductivity. Science 326, (5949)116 (2009)Google Scholar
21.Kim, B.J., Tersoff, J., Kodambaka, S., Reuter, M.C., Stach, E.A., Ross, F.M.Kinetics of individual nucleation events observed in nanoscale vapor-liquid-solid growth. Science 322, (5904)1070 (2008)Google Scholar
22.Hansen, P.L., Wagner, J.B., Helveg, S., Rostrup-Nielsen, J.R., Clausen, B.S., Topsoe, H.Atom-resolved imaging of dynamic shape changes in supported copper nanocrystals. Science 295, (5562)2053 (2002)Google Scholar
23.Shan, Z.W., Mishra, R.K., Asif, S.A.S., Warren, O.L., Minor, A.M.Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals. Nat. Mater. 7, (2)115 (2008)CrossRefGoogle ScholarPubMed
24.Minor, A.M., Asif, S.A.S., Shan, Z.W., Stach, E.A., Cyrankowski, E., Wyrobek, T.J., Warren, O.L.A new view of the onset of plasticity during the nanoindentation of aluminium. Nat. Mater. 5, (9)697 (2006)Google Scholar
25.Zheng, H.M., Smith, R.K., Jun, Y.W., Kisielowski, C., Dahmen, U., Alivisatos, A.P.Observation of single colloidal platinum nanocrystal growth trajectories. Science 324, (5932)1309 (2009)Google Scholar
26.Williamson, M.J., Tromp, R.M., Vereecken, P.M., Hull, R., Ross, F.M.Dynamic microscopy of nanoscale cluster growth at the solid-liquid interface. Nat. Mater. 2, (8)532 (2003)Google Scholar
27.de Jonge, N., Peckys, D.B., Kremers, G.J., Piston, D.W.Electron microscopy of whole cells in liquid with nanometer resolution. Proc. Natl. Acad. Sci. U.S.A. 106, (7)2159 (2009)Google Scholar
28.Wang, J.X., Liu, D.F., Yan, X.Q., Yuan, H.J., Ci, L.J., Zhou, Z.P., Gao, Y., Song, L., Liu, L.F., Zhou, W.Y., Wang, G., Xie, S.S.Growth of SnO2 nanowires with uniform branched structures. Solid State Commun. 130, 89 (2004)Google Scholar
29.Pan, Z.W., Dai, Z.R., Wang, Z.L.Nanobelts of semiconducting oxides. Science 291, 1947 (2001)CrossRefGoogle ScholarPubMed
30.Courtney, I.A., Dahn, J.R.Electrochemical and in situ x-ray diffraction studies of the reaction of lithium with tin oxide composites. J. Electrochem. Soc. 144, 2045 (1997)Google Scholar