Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-02T16:41:54.206Z Has data issue: false hasContentIssue false

In vacuo Pulsed Laser Ablation of YBa2Cu3O7–x Target for the Formation of Y2O3 Nanostructures

Published online by Cambridge University Press:  31 January 2011

D. B. Jan
Affiliation:
Superconductivity Technology Center, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Q. X. Jia
Affiliation:
Superconductivity Technology Center, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
M. E. Hawley
Affiliation:
MST-8 (Structure and Property Relationships), Los Alamos National Laboratory, Los Alamos, New Mexico 87545
G. W. Browne
Affiliation:
MST-8 (Structure and Property Relationships), Los Alamos National Laboratory, Los Alamos, New Mexico 87545
C. J. Wetteland
Affiliation:
MST-8 (Structure and Property Relationships), Los Alamos National Laboratory, Los Alamos, New Mexico 87545
H. P. Sun
Affiliation:
Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109
X. Q. Pan
Affiliation:
Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109
Get access

Abstract

The formation of superconducting YBa2Cu3O7–x (Y123) by in situ pulsed laser deposition from a stoichiometric Y123 target typically requires an oxygen-ambient environment (P ˜ 100–300-mtorr O2) and appropriate substrate temperature during deposition. We have found that pulsed laser deposition from a Y123 target in vacuo onto a (001) LaAlO3 substrate favors the formation of Y2O3. We observed that the Y2O3 (001) films yield three-dimensional nanoscale morphologies that are markedly different from the planar growth surface of conventional superconducting c-axis Y123 films and Y2O3 films formed from the pulsed laser ablation of a Y2O3 target.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aggarwal, A.S., Monga, A.P., Perusse, S.R., Ramesh, R., Ballarotto, V., Williams, E.D., Chalamala, B.R., Wei, Y., and Reuss, R.H., Science 287, 2235 (2000).CrossRefGoogle Scholar
Zeppenfeld, A.P., Diercks, V., Tolkes, C., David, R., and Krzyzowski, M.A., Appl. Surf. Sci. 130–132, 484 (1998).CrossRefGoogle Scholar
Kim, J., Chrisey, D.B., Gilmore, C.M., and Horwitz, J.S., Supercond. Sci. Technol. 13, 417 (2000).CrossRefGoogle Scholar
Kanda, N., Kawasaki, M., Kitajima, T., and Koinuma, H., Phys. Rev. B 56, 8419 (1997).CrossRefGoogle Scholar
Gong, J.P., Kawasaki, M., Fujito, K., Tsuchiya, R., Yoshimot, M., and Koinuma, H., Phys. Rev. B 50, 3280 (1994).CrossRefGoogle Scholar
Norton, M.G., Biggers, R.R., Maartense, I., Moser, E.K., and Brown, J.L., Physica C 233, 321 (1994).CrossRefGoogle Scholar
Gao, J. and Wong, W.H., Physica C 251, 330 (1995).CrossRefGoogle Scholar
Chalamala, B.R., Wei, Y., and Gnade, B.E., IEEE Spectrum 35, 42 (1998).CrossRefGoogle Scholar
Baptist, R., in NATO ASI Series E: Applied Sciences, edited by Binh, Vu Thien, Rarcia, N., and Dransfeld, K. (Kluwer, Dordrecht, The Netherlands, 1993), Vol. 235, p. 165.Google Scholar
Liu, Y., Dam, T.H., and Pantano, P., Anal. Chim. Acta 419, 215225 (2000).CrossRefGoogle Scholar
Piñol, S., Sandiumenge, F., Martínez, B., Gomis, V., Fontcuberta, J., and Obradors, X., Appl. Phys. Lett. 65, 1448 (1994).CrossRefGoogle Scholar
Murakama, M., Mod. Phys. Lett. 4, 163 (1990).CrossRefGoogle Scholar
Jia, Q.X., Foltyn, S.R., Arendt, P.N., Kung, H., Holesinger, T.G., and Smith, J.F., 2000 International Workshop on Superconductivity, Matsue-shii Shimane, Japan, June 2000, pp. 192194.Google Scholar
Sun, H.P., Jan, D.B., Q.X Jia, and Pan, X.Q. (to be published).Google Scholar