Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-13T06:34:21.389Z Has data issue: false hasContentIssue false

Increased conductivity of polymerized ionic liquids through the use of a nonpolymerizable ionic liquid additive

Published online by Cambridge University Press:  08 November 2013

Kaija Põhako-Esko*
Affiliation:
University of Tartu, Institute of Chemistry, 50411 Tartu, Estonia; and University of Tartu, Institute of Physics and Estonian Nanotechnology Competence Center, 51014 Tartu, Estonia
Martin Timusk
Affiliation:
University of Tartu, Institute of Physics and Estonian Nanotechnology Competence Center, 51014 Tartu, Estonia
Kristjan Saal
Affiliation:
University of Tartu, Institute of Physics and Estonian Nanotechnology Competence Center, 51014 Tartu, Estonia
Rünno Lõhmus
Affiliation:
University of Tartu, Institute of Physics and Estonian Nanotechnology Competence Center, 51014 Tartu, Estonia
Ilmar Kink
Affiliation:
University of Tartu, Institute of Physics and Estonian Nanotechnology Competence Center, 51014 Tartu, Estonia
Uno Mäeorg
Affiliation:
University of Tartu, Institute of Chemistry, 50411 Tartu, Estonia
*
a)Address all correspondence to this author. e-mail: kaija.pohako@ut.ee
Get access

Abstract

In the present study, polymerizable ionic liquids (ILs), 1-[n-(methacryloyloxy)alkyl]-3-methylimidazolium bromides (n = 2, 6, 7, or 10), were synthesized in high yields. Moreover, the compounds obtained (n = 6, 7, or 10) were used in the preparation of composite materials comprising a polymerized IL matrix and a nonpolymerizable IL additive, 1-ethyl-3-methylimidazolium tetrafluoroborate ([EMIM][BF4]) in various proportions (up to 75% vol/vol of [EMIM][BF4]). The UV-radiation-initiated photopolymerization process was monitored in situ by measuring the resistivities of the mixtures. An increase in [EMIM][BF4] content in the composites led to an increase in the ionic conductivities of the materials while retaining their solid state at levels as high as 40% vol/vol of the [EMIM][BF4] content. The 40% vol/vol composites had conductivities of approximately 10−4 S/cm compared to the conductivities of 10−5 S/cm for the corresponding neat polymerized ILs. Above this [EMIM][BF4] content, the materials were sticky gels, and from 50% vol/vol onwards, entirely liquid.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kirchner, B.: Topics in Current Chemistry: Ionic Liquids, Vol. 290 (Springer, Heidelberg, Germany, 2010), p. 345.CrossRefGoogle ScholarPubMed
Freemantle, M.: An Introduction to Ionic Liquids (RSC Publishing, Cambridge, UK, 2010), p. 281.Google Scholar
Wasserscheid, P. and Welton, T.: Ionic Liquids in Synthesis (Wiley-VCH Verlag GmbH & Co., Weinheim, Germany, 2002), p. 364.CrossRefGoogle Scholar
Galinski, M., Lewandowski, A., and Stepniak, I.: Ionic liquids as electrolytes. Electrochim. Acta 51(26), 5567 (2006).CrossRefGoogle Scholar
Fukushima, T., Kosaka, A., Ishimura, Y., Yamamoto, T., Takigawa, T., Ishii, N., and Aida, T.: Molecular ordering of organic molten salts triggered by single-walled carbon nanotubes. Science 300(5628), 2072 (2003).CrossRefGoogle ScholarPubMed
Swatloski, R.P., Spear, S.K., Holbrey, J.D., and Rogers, R.D.: Dissolution of cellulose with ionic liquids. J. Am. Chem. Soc. 124(18), 4974 (2002).CrossRefGoogle ScholarPubMed
Olivier-Bourbigou, H., Magna, L., and Morvan, D.: Ionic liquids and catalysis: Recent progress to knowledge. Appl. Catal., A 373(1–2), 1 (2010).CrossRefGoogle Scholar
Anderson, J.L., Armstrong, D.W., and Wei, G-T.: Ionic liquids in analytical chemistry. Anal. Chem. 78(9), 2893 (2006).CrossRefGoogle ScholarPubMed
Armand, M., Endres, F., MacFarlane, D.R., Ohno, H., and Scrosati, B.: Ionic-liquid materials for the electrochemical challenges of the future. Nat. Mater. 8(8), 621 (2009).CrossRefGoogle ScholarPubMed
Ye, Y-S., Rick, J., and Hwang, B-J.: Ionic liquids polymer electrolytes. J. Mater. Chem. A 1(8), 2719 (2013).CrossRefGoogle Scholar
Lodge, T.P.: Materials science: A unique platform for materials design. Science 321(5885), 50 (2008).CrossRefGoogle ScholarPubMed
Yuan, J. and Antonietti, M.: Poly(ionic liquid)s: Polymers expanding classical property profiles. Polymer 52(7), 1469 (2011).CrossRefGoogle Scholar
Ohno, H. and Ito, K.: Room-temperature molten salt polymers as a matrix for fast ion conduction. Chem. Lett. 27(8), 751 (1998).CrossRefGoogle Scholar
Ohno, H.: Design of ion conductive polymers based on ionic liquids. Macromol. Symp. 249250, 551 (2007).CrossRefGoogle Scholar
Mecerreyes, D.: Polymeric ionic liquids: Broadening the properties and applications of polyelectrolytes. Prog. Polym. Sci. 36(12), 1629 (2011).CrossRefGoogle Scholar
Tang, J., Tang, H., Sun, W., Radosz, M., and Shen, Y.: Low pressure CO2 sorption in ammonium-based poly(ionic liquid)s. Polymer 46(26), 12460 (2005).CrossRefGoogle Scholar
Marcilla, R., Blazquez, J.A., Fernandez, R., Grande, H., Pomposo, J.A., and Mecerreyes, D.: Synthesis of novel polycations using the chemistry of ionic liquids. Macromol. Chem. Phys. 206(2), 299 (2005).CrossRefGoogle Scholar
Ogihara, W., Washiro, S., Nakajima, H., and Ohno, H.: Effect of cation structure on the electrochemical and thermal properties of ion conductive polymers obtained from polymerizable ionic liquids. Electrochim. Acta 51(13), 2614 (2006).CrossRefGoogle Scholar
Tsarevsky, N.V. and Matyjaszewski, K.: “Green” atom transfer radical polymerization: From process design to preparation of well-defined environmentally friendly polymeric materials. Chem. Rev. 107(6), 2270 (2007).CrossRefGoogle ScholarPubMed
Mori, H., Yahagi, M., and Endo, T.: RAFT polymerization of N-vinylimidazolium salts and synthesis of thermoresponsive ionic liquid block co-polymers. Macromolecules 42(21), 8082 (2009).CrossRefGoogle Scholar
Vygodskii, Y.S., Shaplov, A.S., Lozinskaya, E.I., Lyssenko, K.A., Golovanov, D.G., Malyshkina, I.A., Gavrilova, N.D., and Buchmeiser, M.R.: Conductive polymer electrolytes derived from poly(norbornene)s with pendant ionic imidazolium moieties. Macromol. Chem. Phys. 209(1), 40 (2008).CrossRefGoogle Scholar
Green, O., Grubjesic, S., Lee, S., and Firestone, M.A.: The design of polymeric ionic liquids for the preparation of functional materials. Polym. Rev. 49(4), 339 (2009).CrossRefGoogle Scholar
Azzaroni, O., Brown, A.A., and Huck, W.T.S.: Tuneable wettability by clicking counterions into polyelectrolyte brushed. Adv. Mater. 19(1), 151 (2007).CrossRefGoogle Scholar
Zhang, Q., Lu, X., Qiao, Y., Zhang, L., Liu, D-L., Zhang, W., Han, G-X., and Song, X-M.: Direct electrochemistry and electrocatalysis of hemoglobin immobilized in a polymeric ionic liquid film. Electroanalysis 22(9), 1000 (2010).CrossRefGoogle Scholar
Tang, J., Sun, W., Tang, H., Radosz, M., and Shen, Y.: Enhanced CO2 absorption of poly(ionic liquid)s. Macromolecules 38(6), 2037 (2005).CrossRefGoogle Scholar
Zhao, Q. and Anderson, J.L.: Highly selective GC stationary phases consisting of binary mixtures of polymeric ionic liquids. J. Sep. Sci. 33(1), 79 (2010).CrossRefGoogle ScholarPubMed
Washiro, S., Yoshizawa, M., Nakajima, H., and Ohno, H.: Highly ion conductive flexible films composed of network polymers based on polymerizable ionic liquids. Polymer 45(5), 1577 (2004).CrossRefGoogle Scholar
Ohno, H.: Electrochemical Aspects of Ionic Liquids (John Wiley & Sons, Inc., New York, 2005), p. 392.CrossRefGoogle Scholar
Marcilla, R., Alcaide, F., Sardon, H., Pomposo, J. A., Pozo-Gonzalo, C., and Mecerreyes, D.: Tailor-made polymer electrolytes based upon ionic liquid and their application in-all plastic electrochromic devices. Electrochem. Commun. 8(3), 482 (2006).CrossRefGoogle Scholar
Allen, N.S.: Photoinitiators for UV and visible curing of coatings: Mechanisms and properties. J. Photochem. Photobiol., A 100(1–3), 101 (1996).CrossRefGoogle Scholar
Barta, D., Seifert, S., and Firestone, M.A.: The effect of cation structure on the mesophase architecture of self-assembled and polymerized imidazolium-based ionic liquids. Macromol. Chem. Phys. 208(13), 1416 (2007).Google Scholar
Nakashima, T., Sakashita, M., Nonoguchi, Y., and Kawai, T.: Sensitized photopolymerization of an ionic liquid-based monomer by using CdTe nanocrystals. Macromolecules 40(18), 6540 (2007).CrossRefGoogle Scholar
Põhako-Esko, K., Taaber, T., Saal, K., Lõhmus, R., Kink, I., and Mäeorg, U.: New method for synthesis of methacrylate type polymerizable ionic liquids. Synth. Commun. 43(21), 2846 (2013).CrossRefGoogle Scholar
Kang, S.K., Kim, W.S., and Moon, B.H.: An effective method for the preparation of ω-bromoalkanols from α,ω-diols. Synthesis 1985(12), 1161 (1985).CrossRefGoogle Scholar
Ding, S., Tang, H., Radosz, M., and Shen, Y.: Atom transfer radical polymerization of ionic liquid 2-(1-butylimidazolium-3-yl)ethyl methacrylate tetrafluoroborate. J. Polym. Sci., Part A: Polym. Chem. 42(22), 5794 (2004).CrossRefGoogle Scholar
Chen, H., Choi, J-H., Salas-de la Cruz, D., Winey, K.I., and Elabd, Y.A.: Polymerized ionic liquids: The effect of random co-polymer composition on ion conduction. Macromolecules 42(13), 4809 (2009).CrossRefGoogle Scholar
Srinivasan, S., Lee, M.W., Grady, M.C., Soroush, M., and Rappe, A.M.: Self-initiation mechanism in spontaneous thermal polymerization of ethyl and n-butyl acrylate: A theoretical study. J. Phys. Chem. A 114(30), 7975 (2010).CrossRefGoogle ScholarPubMed
Mayo, F.R.: Chain transfer in the polymerization of styrene. VIII. Chain transfer in bromobenzene and mechanism of thermal initiation. J. Am. Chem. Soc. 75, 6133 (1953).CrossRefGoogle Scholar
Jovanovski, V., Marcilla, R., and Mecerreyes, D.: Tuning the properties of functional pyrrolidinium polymers by co-polymerization of diallyldimethylammonium ionic liquids. Macromol. Rapid Commun. 31(18), 1646 (2010).CrossRefGoogle ScholarPubMed
Jarosik, A., Krajewski, S.R., Lewandowski, A., and Radzimski, P.: Conductivity of ionic liquids in mixtures. J. Mol. Liq. 123(1), 43 (2006).CrossRefGoogle Scholar
Niedermeyer, H., Hallett, J.P., Villar-Garcia, I.J., Hunt, P.A., and Welton, T.: Mixtures of ionic liquids. Chem. Soc. Rev. 41(23), 7780 (2012).CrossRefGoogle ScholarPubMed