Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-28T01:15:07.505Z Has data issue: false hasContentIssue false

Increasing the mean grain size in copper films and features

Published online by Cambridge University Press:  31 January 2011

K. Vanstreels*
Affiliation:
Hasselt University, Institute for Materials Research, 3590 Diepenbeek, Belgium; and Interuniversity Microelectronics Centre (IMEC) vzw, Division Imomec, 3590 Diepenbeek, Belgium
S.H. Brongersma
Affiliation:
Stichting Interuniversity Microelectronics Centre (IMEC) Nederland, High Tech Campus 48, 5605 KN Eindhoven, The Netherlands
Zs. Tokei
Affiliation:
Interuniversity Microelectronics Centre (IMEC) vzw, 3001 Leuven, Belgium
L. Carbonell
Affiliation:
Interuniversity Microelectronics Centre (IMEC) vzw, 3001 Leuven, Belgium
W. De Ceuninck
Affiliation:
Hasselt University, Institute for Materials Research, 3590 Diepenbeek, Belgium; and Interuniversity Microelectronics Centre (IMEC) vzw, Division Imomec, 3590 Diepenbeek, Belgium
J. D’Haen
Affiliation:
Hasselt University, Institute for Materials Research, 3590 Diepenbeek, Belgium; and Interuniversity Microelectronics Centre (IMEC) vzw, Division Imomec, 3590 Diepenbeek, Belgium
M. D’Olieslaeger
Affiliation:
Hasselt University, Institute for Materials Research, 3590 Diepenbeek, Belgium; and Interuniversity Microelectronics Centre (IMEC) vzw, Division Imomec, 3590 Diepenbeek, Belgium
*
a)Address all correspondence to this author. e-mail: kris.vanstreels@uhasselt.be
Get access

Abstract

A new grain-growth mode is observed in thick sputtered copper films. This new grain-growth mode, also referred to in this work as super secondary grain growth (SSGG) leads to highly concentric grain growth with grain diameters of many tens of micrometers, and drives the system toward a {100} texture. The appearance, growth dynamics, final grain size, and self-annealing time of this new grain-growth mode strongly depends on the applied bias voltage during deposition of these sputtered films, the film thickness, the post-deposition annealing temperature, and the properties of the copper diffusion barrier layers used in this work. Moreover, a clear rivalry between this new growth mode and the regularly observed secondary grain-growth mode in sputtered copper films was found. The microstructure and texture evolution in these films is explained in terms of surface/interface energy and strain-energy density minimizing driving forces, where the latter seems to be an important driving force for the observed new growth mode. By combining these sputtered copper films with electrochemically deposited (ECD) copper films of different thickness, the SSGG growth mode could also be introduced in ECD copper, but this led to a reduced final SSGG grain size for thicker ECD films. The knowledge about the thin-film level is used to also implement this new growth mode in small copper features by slightly modifying the standard deposition process. It is shown that the SSGG growth mode can be introduced in narrow structures, but optimizations are still necessary to further increase the mean grain size in features.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Edelstein, D.C.: Copper chip technology in Proceedings of SPIE Conference, Multilevel Interconnect Technology IIedited by M. Graef, and D.N. Patel, Vol. 3508, SPIE Bellingham, WA 1998 8CrossRefGoogle Scholar
2Chow, M.M., Cronin, J.E., Guthrie, W.L., Kaanta, W., Luther, B., Patrick, W.J., Perry, K.A., Standley, C.L. Method for producing coplanar multi-level metal insulator films on a substrate and for forming patterned conductive lines simultaneously with stud vias. U.S. Patent No. 4 789 648, December 6, 1988Google Scholar
3Andricacos, P.C., Uzoh, C., Dukovic, J.O., Horkans, J., Deligianni, H.: Damascene copper electroplating for chip interconnections. IBM J. Res. Dev. 42, 567 1998CrossRefGoogle Scholar
4Josell, D., Wheeler, D., Huber, W.H., Moffat, T.P.: Superconformal electrodeposition in submicron features. Phys. Rev. Lett. 87, 016101 2001CrossRefGoogle ScholarPubMed
5Brongersma, S.H., Kerr, E., Vervoort, I., Saerens, A., Maex, K.: Grain growth, stress, and impurities in electroplated copper. J. Mater. Res. 17, 582 2002CrossRefGoogle Scholar
6Brongersma, S.H., Richard, E., Vervoort, I., Bender, H., Vandervorst, W., Lagrange, S., Beyer, G., Maex, K.: Two-step room temperature grain growth in electroplated copper. J. Appl. Phys. 86, 3642 1999CrossRefGoogle Scholar
7Brongersma, S.H., Vanstreels, K., Wu, W., Zhang, W., Ernur, D., D’Haen, J., Terzieva, V., Van Hove, M., Clarysse, T., Carbonell, L., Vandervorst, W., De Ceuninck, W., Maex, K. Copper grain growth in reduced dimensions,Proc. IEEE International Interconnect Technology Conference IITC San Francisco, CA 2004 48–52Google Scholar
8Thompson, C.V.: Secondary grain growth in thin films of semiconductors: Theoretical aspects. J. Appl. Phys. 58, 763 1985CrossRefGoogle Scholar
9Rossnagel, S.: Ionization by radio frequency inductively coupled plasma in Ionized Physical Vapor Deposition,edited by S. Rossnagel (Academic Press, San Diego, CA, 2000CrossRefGoogle Scholar
10Chin, B.L., Yao, G., Ding, P., Fu, J., Chen, L. Barrier and seed technologies for sub-0.10 micron copper chips. Semicond. Int. (2001), pp. 107–113Google Scholar
11Gopalraja, P., Forster, J.: Nonlinear wave interaction in a magnetron plasma. Appl. Phys. Lett. 77(22), 3526 2000CrossRefGoogle Scholar
12Rohm and Haas Electronic Materials Philadelphia, PAhttp://electronicmaterials.rohmhaas.comGoogle Scholar
14Flinn, P.A.: Principles and applications of wafer curvature techniques for stress measurements in thin films in Thin Films: Stresses and Mechanical Properties edited by J.C. Bravman, W.D. Nix, D.M. Barnett, and D.A. Smith Mater. Res. Soc. Symp. Proc. Pittsburgh, PA 130, 1989 41Google Scholar
16Thompson, C.V.: Experimental and theoretical aspects of grain growth in thin films. Mater. Sci. Forum 94-96, 245 1992CrossRefGoogle Scholar
17Sanchez, J.E., Arzt, E.: Effects of grain orientation on hillock formation and grain growth in aluminum films on silicon substrates. Scripta Metall. Mater. 27, 285 1992CrossRefGoogle Scholar
18Thompson, C.V.: Texture evolution during grain growth in polycrystalline films. Scripta Metall. Mater. 28, 167 1993CrossRefGoogle Scholar
19Harper, J.M.E., Cabral, C. Jr., Andricacos, P.C., Gignac, L., Noyan, I.C., Rodbell, K.P., Hu, C.K.: Mechanisms for microstructure evolution in electroplated copper thin films near room temperature. J. Appl. Phys. 86, 2516 1999CrossRefGoogle Scholar
20Thompson, C.V.: Coarsening of particles on a planar substrate: Interface energy anistropy and application to grain growth in thin films. Acta Metall. 36, 2929 1988CrossRefGoogle Scholar
21McLean, M., Gale, B.: Surface energy anisotropy by an improved thermal grooving technique. Philos. Mag. 20, 1033 1969CrossRefGoogle Scholar
22Jian-Min, Z., Fei, M., Ke-Wei, X.: Calculation of the surface energy of fcc metals with modified embedded-atom method. Chin. Phys. 13, 1082 2004CrossRefGoogle Scholar
23Murikami, M., Chaudhari, P.: Dependence of strains on crystal orientation in Pb thin films. Thin Solid Films 46, 109 1977CrossRefGoogle Scholar
24Zielinski, E.M., Vinci, R.P., Bravman, J.C.: Effects of barrier layer and annealing on abnormal grain growth in copper thin films. J. Appl. Phys. 76, 4516 1994CrossRefGoogle Scholar
25Zielinski, E.M., Vinci, R.P., Bravman, J.C.: The effects of processing on the microstructure of copper thin films on tantalum barrier layers in Materials Reliability in Microelectronics V edited by A.S. Oates, W.F. Filter, R. Rosenberg, A.L. Greer, and K. Gadepally Mater. Res. Soc. Symp. Proc. Pittsburgh, PA 391, 1995 303Google Scholar
26Patten, J.W., McClanahan, E.D., Johnson, J.W.: Room-temperature recrystallization in thick bias-sputtered copper deposits. J. Appl. Phys. 42, 4371 1971CrossRefGoogle Scholar
27Chen, M., Rengarajan, S., Hey, P., Dordi, Y., Zhang, H., Hashim, I., Ding, P., Chin, B.: Room temperature self-annealing of electroplated and sputtered copper films in Advanced Interconnects and Contacts edited by D.C. Edelstein, T. Kikkawa, M.C. Öztürk, K-N. Tu, and E.J. Weitzman Mater. Res. Soc. Symp. Proc. Warrendale, PA 1999 564, 413Google Scholar
28Rossnagel, S.M., Kuan, T.S.: Time development of microstructure and resistivity for very thin Cu Films. J. Vac. Sci. Technol., A 20, 1911 2002CrossRefGoogle Scholar
29Barnat, E.V., Nagakura, D., Wang, P.I., Lu, T.M.: Real time resistivity measurements during sputter deposition of ultrathin copper films. J. Appl. Phys. 91, 1667 2002CrossRefGoogle Scholar
30Detavernier, C., Deduytsche, D., Van Meirhaege, R.L., De Baerdemaeker, J., Dauwe, C.: Room-temperature grain growth in sputter-deposited Cu films. Appl. Phys. Lett. 82, 1863 2003CrossRefGoogle Scholar
31Murarka, S.P., Hymes, S.W.: Copper metallization for ULSI and beyond. Crit. Rev. Solid State Mater. Sci. 20, 87 1995CrossRefGoogle Scholar
32Chaudhari, P.: Mechanisms of stress relief in polycrystalline films. IBM J. Res. Dev. 13, 197 1969CrossRefGoogle Scholar
33Hwang, S-J., Lee, Y-D., Park, Y-B., Lee, J-H., Jeong, C-O., Joo, Y-C.: In situ study of stress relaxation mechanisms of pure Al thin films during isothermal annealing. Scripta Mater. 54, 1841 2006CrossRefGoogle Scholar
34Brongersma, S.H., Vanstreels, K., Wu, W., Zhang, W., Ernur, D., D’Haen, J., Terzieva, V., Van Hove, M., Clarysse, T., Carbonell, L., Vandervorst, W., De Ceuninck, W., Maex, K.: Copper grain growth in reduced dimensions.Proc. IEEE International Interconnect Technology Conference IITC San Francisco, CA 2004 48–50Google Scholar
35Brongersma, S.H., Vervoort, I., Richard, E., Maex, K.: A grain size limitation inherent to electroplated copper films.Proc. of the IITC , CA 2000 31–33Google Scholar
36Field, D.P., Muppidi, T., Sanchez, J.E.: Electron backscatter diffraction characterization of inlaid Cu lines for interconnect applications. Scanning 25(6), 309 2003CrossRefGoogle Scholar
37Lingk, C., Gross, M.E., Brown, W.L.: X-ray diffraction pole figures evidence for (111) sidewall texture of electroplated Cu in submicron damascence trenches. Appl. Phys. Lett. 74, 682 1999CrossRefGoogle Scholar
38Besser, P.R., Zschech, E., Blum, W., Winter, D., Oretega, R., Rose, S., Herrick, M., Gall, M., Thrasher, S., Tiner, M., Baker, B., Braeckelmann, G., Zhao, L., Simpson, C., Capasso, C., Kawasaki, H., Weitzman, E.: Microstructural characterization of inlaid copper interconnect lines. J. Electron. Mater. 30, 320 2001CrossRefGoogle Scholar
39Lee, D.N., Lee, H.J.: Effect of stresses on the evolution of annealing textures in Cu and Al interconnects. J. Electron. Mater. 32, 1012 2003CrossRefGoogle Scholar
40Rodbell, K.P., Knorr, D.B., Mis, J.D.: The microstructure, mechanical stress, texture, and electromigration behavior of Al-Pd alloys. J. Electron. Mater. 22, 597 1993CrossRefGoogle Scholar
41Attardo, M.J., Rosenberg, R.: Electromigration damage in aluminum film conductors. J. Appl. Phys. 41, 2381 1970CrossRefGoogle Scholar
42Campbell, A.N., Russel, E.M., Knorr, D.B.: Relationship between texture and electromigration lifetime in sputtered Al-1%Si thin films. J. Electron. Mater. 22, 589 1993CrossRefGoogle Scholar