Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-11T13:21:31.656Z Has data issue: false hasContentIssue false

Indentation creep revisited

Published online by Cambridge University Press:  15 August 2011

In-Chul Choi
Affiliation:
Division of Materials Science and Engineering, Hanyang University, Seoul 133-791, Korea
Byung-Gil Yoo
Affiliation:
Division of Materials Science and Engineering, Hanyang University, Seoul 133-791, Korea
Yong-Jae Kim
Affiliation:
Division of Materials Science and Engineering, Hanyang University, Seoul 133-791, Korea
Jae-il Jang*
Affiliation:
Division of Materials Science and Engineering, Hanyang University, Seoul 133-791, Korea
*
a)Address all correspondence to this author. e-mail: jijang@hanyang.ac.kr
Get access

Abstract

Recent extensive nanomechanical experiments have revealed that the instantaneous strength and plasticity of a material can be significantly affected by the size (of sample, microstructure, or stressed zone). One more important property to be added into the list of size-dependent properties is time-dependent plastic deformation referred to as creep; it has been reported that the creep becomes more active at the small scale. Analyzing the creep in the small scale can be valuable not only for solving scientific curiosity but also for obtaining practical engineering information about the lifetime or durability of advanced small-scale structures. For the purpose, nanoindentation creep experiments have been widely performed by far. Here we critically review the existing nanoindentation creep methods and the related issues and finally suggest possible novel ways to better estimate the small-scale creep properties.

Type
Reviews
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Dieter, G.E.: Mechanical Metallurgy (McGraw-Hill, London, 1988).Google Scholar
2.Kassner, M.E. and Pérez-Prado, M.T.: Fundamentals of Creep in Metals and Alloys (Elsevier, Oxford, 2004).Google Scholar
3.Nabarro, F.R.N.: Creep in commercially pure metals. Acta Mater. 54, 263 (2006).Google Scholar
4.ASTM E 139-06: Standard Test Method for Conducting Creep, Creep-rupture, and Stress-rupture Tests of Metallic Materials (ASTM International, West Conshohocken, 2006).Google Scholar
5.Wang, F., Huang, P., and Xu, K.W.: Time dependent plasticity at real nanoscale deformation. Appl. Phys. Lett. 90, 161921 (2007).CrossRefGoogle Scholar
6.Guisbiers, G. and Buchaillot, L.: Size and shape effects on creep and diffusion at the nanoscale. Nanotechnology 19, 435701 (2008).CrossRefGoogle ScholarPubMed
7.Wang, F., Huang, P., and Lu, T.: Surface-effect territory in small volume creep deformation. J. Mater. Res. 24, 2377 (2009).Google Scholar
8.Mulhearn, T.O. and Tabor, D.: Creep and hardness of metals: A physical study. J. Inst. Met. 89, 7 (1960).Google Scholar
9.Atkins, A.G., Silvério, A., and Tabor, D.: Indentation hardness and the creep of solids. J. Inst. Met. 94, 369 (1966).Google Scholar
10.Kutty, T.R.G., Ganguly, C., and Sastry, D.H.: Development of creep curves from hot indentation hardness data. Scr. Mater. 34, 1833 (1996).CrossRefGoogle Scholar
11.Sargent, P.M. and Ashby, M.F.: Indentation creep. Mater. Sci. Technol. 8, 594 (1992).Google Scholar
12.Kutty, T.R.G., Jarvis, T., and Ganguly, C.: Hot hardness and indentation creep studies on Zr-1Nb-1Sn-0.1Fe alloy. J. Nucl. Mater. 246, 189 (1997).CrossRefGoogle Scholar
13.Li, J.C.M.: Impression creep and other localized tests. Mater. Sci. Eng., A 322, 23 (2002).CrossRefGoogle Scholar
14.Chu, S.N.G. and Li, J.C.M.: Impression creep; a new creep test. J. Mater. Sci. 12, 2200 (1977).CrossRefGoogle Scholar
15.Pethica, J.B., Hutchings, R., and Oliver, W.C.: Hardness measurement at penetration depths as small as 20 nm. Philos. Mag. A 48, 593 (1983).CrossRefGoogle Scholar
16.Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).Google Scholar
17.Oliver, W.C. and Pharr, G.M.: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19, 3 (2004).Google Scholar
18.Raman, V. and Berriche, R.: An investigation of the creep processes in tin and aluminum using a depth-sensing indentation technique. J. Mater. Res. 7, 627 (1992).CrossRefGoogle Scholar
19.Lucas, B.N. and Oliver, W.C.: Indentation power-law creep of high-purity indium. Metall. Mater. Trans. A 30A, 601 (1999).Google Scholar
20.Li, H. and Ngan, A.H.W.: Size effects of nanoindentation creep. J. Mater. Res. 19, 513 (2004).CrossRefGoogle Scholar
21.Goodall, R. and Clyne, T.W.: A critical appraisal of the extraction of creep parameters from nanoindentation data obtained at room temperature. Acta Mater. 54, 5489 (2006).Google Scholar
22.Stone, D.S., Jakes, J.E., Puthoff, J., and Elmustafa, A.A.: Analysis of indentation creep. J. Mater. Res. 25, 611 (2010).CrossRefGoogle Scholar
23.LaFontaine, W.R., Yost, B., Black, R.D., and Li, C-Y.: Indentation load relaxation experiments with indentation depth in the submicron range. J. Mater. Res. 5, 2100 (1990).Google Scholar
24.Mayo, M.J. and Nix, W.D.: A miro-indentation study of superplasticity in Pb, Sn, and Sn-38 wt% Pb. Acta Metall. 36, 2183 (1988).CrossRefGoogle Scholar
25.Mayo, M.J., Siegel, R.W., Narayanasamy, A., and Nix, W.D.: Mechanical properties of nanophase TiO2 as determined by nanoindentation. J. Mater. Res. 5, 1073 (1990).CrossRefGoogle Scholar
26.Tabor, D.: The Hardness of Metals (Oxford University Press, London, 1951).Google Scholar
27.Mayo, M.J., Siegel, R.W., Liao, Y.X., and Nix, W.D.: Nanoindentation of nanocrystalline ZnO. J. Mater. Res. 7, 973 (1992).CrossRefGoogle Scholar
28.Poisl, W.H., Oliver, W.C., and Fabes, B.D.: The relationship between indentation and uniaxial creep in amorphous selenium. J. Mater. Res. 10, 2024 (1995).Google Scholar
29.Syed Asif, S.A. and Pethica, J.B.: Nanoindentation creep of single-crystal tungsten and gallium arsenide. Philos. Mag. A 76, 1105 (1997).CrossRefGoogle Scholar
30.Feng, G. and Ngan, A.H.W.: Creep and strain burst in indium and aluminium during nanoindentation. Scr. Mater. 45, 971 (2001).Google Scholar
31.Cao, Z. and Zhang, X.: Nanoindentation creep of plasma-enhanced chemical vapor deposited silicon oxide thin films. Scr. Mater. 56, 249 (2007).Google Scholar
32.Elmustafa, A.A., Kose, S., and Stone, D.S.: The strain-rate sensitivity of the hardness in indentation creep. J. Mater. Res. 22, 926 (2007).CrossRefGoogle Scholar
33.Ma, Z.S., Long, S.G., Zhou, Y.C., and Pan, Y.: Indentation scale dependence of tip-in creep behavior in Ni thin films. Scr. Mater. 59, 195 (2008).CrossRefGoogle Scholar
34.Ma, Z., Long, S., Pan, Y., and Zhou, Y.: Loading rate sensitivity of nanoindentation creep in polycrystalline Ni films. J. Mater. Sci. 43, 5952 (2008).Google Scholar
35.Wang, C.L., Zhang, M., and Nieh, T.G.: Nanoindentation creep of nanocrystalline nickel at elevated temperatures. J. Phys. D: Appl. Phys. 42, 115405 (2009).Google Scholar
36.Wang, C.L., Mukai, T., and Nieh, T.G.: Room temperature creep of fine-grained pure Mg: A direct comparison between nanoindentation and uniaxial tension. J. Mater. Res. 24, 1615 (2009).CrossRefGoogle Scholar
37.Yoo, B-G., Oh, J-H., Kim, Y-J., Park, K-W., Lee, J-C., and Jang, J-i.: Nanoindentation analysis of time-dependent deformation in as-cast and annealed Cu–Zr bulk metallic glass. Intermetallics 18, 1898 (2010).CrossRefGoogle Scholar
38.Wang, C.L., Lai, Y.H., Huang, J.C., and Nieh, T.G.: Creep of nanocrystalline nickel: A direct comparison between uniaxial and nanoindentation creep. Scr. Mater. 62, 175 (2010).Google Scholar
39.Kucheyev, S.O., Lord, K.A., and Hamza, A.V.: Room-temperature creep of nanoporous silica. J. Mater. Res. 26, 781 (2011).CrossRefGoogle Scholar
40.Bower, A.F., Fleck, N.A., Needleman, A., and Ogbonna, N.: Indentation of a power law creeping solid. Proc. R. Soc. London, Ser. A 441, 97 (1993).Google Scholar
41.Ogbonna, N., Fleck, N.A., and Cocks, A.C.F.: Transient creep analysis of ball indentation. Int. J. Mech. Sci. 37, 1179 (1995).Google Scholar
42.Johnson, K.L.: Contact Mechanics (Cambridge University Press, Cambridge, 1985).Google Scholar
43.Pharr, G.M., Herbert, E.G., and Gao, Y.: The indentation size effect: A critical examination of experimental observations and mechanistic interpretations. Annu. Rev. Mater. Res. 40, 271 (2010).CrossRefGoogle Scholar
44.Yoo, B-G., Kim, K-S., Oh, J-H., Ramamurty, U., and Jang, J-i.: Room temperature creep in amorphous alloys: Influence of initial strain and free volume. Scr. Mater. 63, 1205 (2010).CrossRefGoogle Scholar
45.Choi, I-C., Yoo, B-G., Kim, Y-J., Seok, M-Y., Wang, Y.M., and Jang, J-i.: Estimating stress exponent of nanocrystalline nickel: Sharp versus spherical indentation. Scr. Mater. 65, 300 (2011).Google Scholar
46.Yoo, B.-G., Choi, I.-C., Kim, Y.-J, Shim, S., Tsui, T.Y., Bei, H., Ramamurty, U., and Jang, J.-i: Size effect on the room-temperature time-dependent deformation of amorphous alloy nanopillars. Submitted for publication.Google Scholar
47.Kim, J-Y. and Greer, J.R.: Tensile and compressive behavior of gold and molybdenum single crystals at the nano-scale. Acta Mater. 57, 5245 (2009).Google Scholar