Published online by Cambridge University Press: 29 August 2012
We report on the photovoltaic properties of polymer solar cells with an inverted structure wherein the electron-collecting electrode comprises an indium tin oxide (ITO) electrode coated with titanium dioxide (TiO2) nanoparticles dispersed into poly(N-vinylpyrrolidone) (PVP). The optimization of performance of polymer solar cells in which the TiO2 concentration in PVP was varied is presented. Pristine solar cells with the TiO2:PVP-coated ITO electrodes showed S-shape current-voltage characteristics. The S-shaped feature disappeared after the continuous exposure of the solar cells to light from an AM 1.5G solar simulator, leading to an improved device performance compared with solar cells that use an ITO or ITO/TiO2 electron-collecting electrodes.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.