Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-02T20:19:28.858Z Has data issue: false hasContentIssue false

Induction-field-activated self-propagating high-temperature synthesis of AlN–SiC solid solutions in the Si3N4–Al–C system

Published online by Cambridge University Press:  31 January 2011

D. Kata
Affiliation:
Department of Materials Chemistry, High-Tech Research Center, Ryukoku University, Seta, Japan
M. Ohyanagi
Affiliation:
Department of Materials Chemistry, High-Tech Research Center, Ryukoku University, Seta, Japan
Z. A. Munir
Affiliation:
Facility for Advanced Combustion Synthesis, Department of Chemical Engineering and Material Science, University of California, Davis, California 95616
Get access

Abstract

The synthesis of AlN–SiC solid solutions from Si3N4, Al, and C was investigated using the induction-field-activated/self-propagating high-temperature synthesis/static pseudo-isostatic compaction technique. Careful x-ray diffraction analyses were made on the products of combustion to determine reaction routes. Optical microscopy as well as scanning electron microscopy with an electron probe microanalysis was used for microstructural analysis. It was found that initially molten aluminum reacted with silicon nitride producing an Al–Si alloy. At higher temperatures, aluminum evaporated from the Al–Si liquid and the synthesis of AlN via a vapor phase process took place. Subsequently, dissolution of AlN into molten Si resulted in the formation of an AlN–SiC solid solution from the Al–N–Si–C liquid phase. However, below 1850 °C, the resulting solid solution of 4AlN–3SiC was not fully crystallized. Combustion temperatures above or equal to 1850 °C were required to prepare a highly crystallized solid solution with a morphology exhibiting hexagonal platelets. Based on these observations, a model for the formation of AlN–SiC solid solution is proposed.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Katsutoshi, K., J. Ceram. Soc. Jpn. 26, 8 (1991).Google Scholar
2.Ruckmich, S., Kranzmann, A., Bischoff, E., and Brook, R.J., J. Eur. Ceram. Soc. 7, 335 (1991).CrossRefGoogle Scholar
3.Lis, J., Stobierski, L., Kata, D., and Nawrocki, J., Polish Ceram. Bull. 15, 90 (1997).Google Scholar
4.Kurokawa, Y., Utsumi, K., and Takamizawa, H., J. Am. Ceram. Soc. 71, 588 (1988).CrossRefGoogle Scholar
5.Lubis, A.H., Hecht, N.L., Graves, G.A. Jr, and Ruh, R., J. Am. Ceram. Soc. 82, 2481 (1999).CrossRefGoogle Scholar
6.Ruh, R., Zangvil, A., and Barlowe, J., Am. Ceram. Soc. Bull. 64, 1368 (1985).Google Scholar
7.Juo, Z.C., Kuo, S-Y., and Virkar, A.V., J. Am. Ceram. Soc. 69, C279 (1986).Google Scholar
8.Unni, C.K. and Gordon, D.E., J. Mater. Sci. 30, 1173 (1995).CrossRefGoogle Scholar
9.Ruh, R., Zangvil, A., and Barlowe, J., Am. Ceram. Soc. Bull. 64, 1368 (1985).Google Scholar
10.Huang, J.L. and Jih, J.M., J. Am. Ceram. Soc. 79, 1262 (1996).CrossRefGoogle Scholar
11.Kuo, S., Virkar, A., and Rafaniello, W., J. Am. Ceram. Soc. 70, C125 (1987).CrossRefGoogle Scholar
12.Ruh, R. and Zangvil, A., J. Am. Ceram. Soc. 65, 260 (1982).CrossRefGoogle Scholar
13.Zangvil, A. and Ruh, R., Mater. Sci. Eng. 71, 159 (1985).CrossRefGoogle Scholar
14.Vodakov, Y.A. and Mokhov, E.N., in Silicon Carbie—1973, edited by Marshall, R.C., Faust, J.W. Jr, and Ryan, C.E. (University Press, SC 1974), pp. 508519.Google Scholar
15.Tajima, Y. and Kingery, W.D., J. Am. Ceram. Soc. 65, C27 (1982).CrossRefGoogle Scholar
16.Birnie, D.P., J. Am. Ceram. Soc. 69, C33 (1986).CrossRefGoogle Scholar
17.Pampuch, R., Ceramic Processing Science and Technology, edited by Hausner, H., Messing, G.L., and Hirano, S., (Ceram. Trans. 51, Am. Ceram. Soc., Westerville, OH, 1995), pp. 119126.Google Scholar
18.Merzhanow, A.G., in Ceramics: Toward to 21st Century, edited by Soga, N. and Kato, A., (Ceram. Soc. Jpn., Tokyo, Japan, 1991), pp. 378403.Google Scholar
19.Balandina, N., Ohyanagi, M., and Munir, Z.A., Key Eng. Mater. 161–163, 91 (1998).CrossRefGoogle Scholar
20.Ohyanagi, M., Shirai, K., Balandina, N., Hisa, M., and Munir, Z.A., J. Am. Ceram. Soc. 83, 1108 (2000).CrossRefGoogle Scholar
21.Ohyanagi, M. and Munir, Z.A., J. Korean Ceram. Soc. 2000, in press.Google Scholar
22.Munir, Z.A., Int. J. SHS 6, 165 (1997).Google Scholar
23.Xue, H. and Munir, Z.A., Scripta Metall. Mater. 35, 979 (1996).CrossRefGoogle Scholar
24.Xue, H. and Munir, Z.A., J. Eur. Ceram. Soc. 17, 1787 (1997).CrossRefGoogle Scholar
25.Kata, D., Shirai, K., Ohyanagi, M., and Munir, Z.A., J. Am. Ceram. Soc. 2000, in press.Google Scholar
26.Ohyanagi, M., Takayuki, T., Koizuni, M., and Munir, Z.A., Proc. of 1st Russia–Japan Workshop on SHS, Karlovy Vary, Czech Republic, Oct. 30–Nov. 3, (1998), pp. 6569.Google Scholar
27.Yamada, O., Hirao, K., Koizumi, M., and Miyamoto, Y., J. Am. Ceram. Soc. 72, 1735 (1989).CrossRefGoogle Scholar
28.Kata, D., Lis, J., and Pampuch, R., Solid State Ionics 101, 65 (1997).Google Scholar
29.Kata, D., Lis, J., Pampuch, R., and Stobierski, L., Int. J. SHS 7, 475 (1998).Google Scholar
30.Ternary Alloys, A Comprehensive Compendium of Evaluated Constitutional Data and Phase Diagrams, edited by Petzow, G. and Effenberg, G. (Weinheim, New York, 1988), p. 7.Google Scholar
31.Viala, J.C., Fortier, P., and Bouix, J., J. Mater. Sci. 25, 1842 (1990).CrossRefGoogle Scholar
32.Ferro, A.C. and Derby, B., Acta Metall. Mater. 43, 3061 (1995).CrossRefGoogle Scholar
33.Ferro, A.C. and Derby, B., J. Mater. Sci. 30, 6119 (1995).CrossRefGoogle Scholar
34.Handbook of Ternary Alloy Phase Diagrams (ASM International, 1995).Google Scholar
35.Kurz, W. and Fisher, D.J., Fundametnals of Solidification (Trans. Tech., Aedermannsdorf, (1989), pp. 122129.Google Scholar
36.Wriedt, H.A., Handbook of the APD Program.Google Scholar
37.Kaiser, W. and Thurmond, C.D., J. Appl. Phys. 30, 427 (1959).CrossRefGoogle Scholar
38.Narushima, T., Ueda, N., Takeuchi, M., Ishii, F., and Iguchi, Y., Mater. Trans. 35, 821 (1994).CrossRefGoogle Scholar
39.Oden, L.L. and McCune, R.A., Metal. Trans. 18A, 2005 (1987).CrossRefGoogle Scholar
40.Scace, R.I. and Slack, G.A., J. Chem. Phys. 30, 1551 (1959).CrossRefGoogle Scholar
41.Carrillo-Heian, E.M., Xue, H., Ohyanagi, M., and Munir, Z.A., J. Am. Ceram. Soc. 83, 1103 (2000).CrossRefGoogle Scholar