Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-05T02:35:35.617Z Has data issue: false hasContentIssue false

Influence of deposition parameters on the stress of magnetron sputter-deposited AlN thin films on Si(100) substrates

Published online by Cambridge University Press:  31 January 2011

G.F. Iriarte
Affiliation:
The Ångström Laboratory, Uppsala University, P.O. Box 534, Se-751 21 Uppsala, Sweden
F. Engelmark
Affiliation:
The Ångström Laboratory, Uppsala University, P.O. Box 534, Se-751 21 Uppsala, Sweden
M. Ottosson
Affiliation:
The Ångström Laboratory, Uppsala University, P.O. Box 534, Se-751 21 Uppsala, Sweden
I.V. Katardjiev
Affiliation:
The Ångström Laboratory, Uppsala University, P.O. Box 534, Se-751 21 Uppsala, Sweden
Get access

Abstract

In this work, a systematic study of the influence of five deposition parameters, i.e., process pressure, substrate temperature, target power, and substrate bias, as well as gas composition on the residual stress in fully textured polycrystalline aluminum nitride thin films deposited on Si(100) wafers using the reactive sputtering method was performed. Post-growth residual stress measurements were obtained indirectly from radius of curvature measurements of the wafer prior to and after deposition. Two different techniques were used to determine the curvature: an optically levered laser beam and an x-ray diffraction method. Stresses in both cases were then evaluated using the Stoney formulation [G.G. Stoney, Proc. R. Soc. (London) A82, 172 (1909)]. Both methods give similar results, with slight quantitative differences. The existence of a transition region between tensile and compressive stress previously reported in the literature is also confirmed. The transition is shown to be strongly dependent on the process parameters. Optimal films regarding stress were grown at 2 mtorr, 900 W at the target, a 20/45 Ar/N2 gas mixture, and floating potential at the substrate. The substrate temperature did not influence the measured internal stress in the films.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Meng, W.J., Sell, J.A., Perry, T.A., Rehn, L.E., and Baldo, P.M., J. Appl. Phys. 75, 344 (1994).CrossRefGoogle Scholar
EerNisse, E.P., in Quartz Resonator Frequency Shifts Arising from Electrode Stress, Proceedings of the 29th Annual Frequency Control Symposium (Electronic Industries Assoc., Washington, D.C., 1975), pp. 14.Google Scholar
Sinha, B.K. and Locke, S., in Thin Film Induced Effects on SAW Devices, edited by McAvoy, B.R. (IEEE, New York, 1987), Vol. 1, pp. 289294.Google Scholar
Chakrabarti, K., Chattopadhyay, K.K., Chaudhuri, S., and Pal, A.K., Mater. Chem. Phys. 50, 50 (1997).CrossRefGoogle Scholar
Buckel, W., J. Vac. Sci. Technol. 6, 606 (1969).CrossRefGoogle Scholar
Chaudhuri, J., Thokala, R., Edgar, J.H., and Sywe, B.S., J. Appl. Phys. 77, 6263 (1995).CrossRefGoogle Scholar
Iancu, O.T., Munz, D., Eigenmann, B., Scholtes, B., and Macherauch, E., J. Am. Ceram. Soc. 73, 1144 (1990).CrossRefGoogle Scholar
Wang, X-L., CHubbard, .R., Alexander, K.B., Becher, P.F., Fernandez-Baca, J.A., and Spooner, S., J. Am. Ceram. Soc. 77, 1569 (1994).CrossRefGoogle Scholar
Benrakkad, M.S., Lopez-Villegas, J.M., Samitier, J., Morante, J.R., Kirsten, M., and Lange, P., Sens. Actuators A A51, 9 (1995).CrossRefGoogle Scholar
Musil, J., Lestina, J., Vlcek, J., and Tolg, T., J. Vac. Sci. Technol. A (Vac. Surf. Films) 19, 420 (2001).CrossRefGoogle Scholar
Kelly, P.J. and Arnell, R.D., Vacuum 56, 159 (2000).CrossRefGoogle Scholar
Dubois, M-A. and Muralt, P., J. Appl. Phys. 89, 6389 (2001).CrossRefGoogle Scholar
Meng, W.J., Sell, J.A., Eesley, G.L., and Perry, T.A., J. Appl. Phys. 74, 2411 (1993).CrossRefGoogle Scholar
Rajamani, A., Beresford, R., and Sheldon, B.W., Appl. Phys. Lett. 79, 3776 (2001).CrossRefGoogle Scholar
Meng, W. J., Sell, J.A., Perry, T.A., and Eesley, G.L., J. Vac. Sci. Technol. A (Vac. Surf. Films) 11, 1377 (1993).CrossRefGoogle Scholar
Dobrynin, A.V., J. Appl. Phys. 85, 1876 (1999).CrossRefGoogle Scholar
Thornton, J.A. and Hoffman, D.W., Thin Solid Films. 171, 5 (1989).CrossRefGoogle Scholar
Dobrynin, A.V., Pis’ma v Zhurnal Tekhnicheskoi Fizika 23, 32 (1997).Google Scholar
Fahnline, D.E., Masters, C.B., and Salamon, N.J., J. Vac. Sci. Technol. A (Vac. Surf. Films) 9, 2483 (1991).CrossRefGoogle Scholar
Windischmann, H., J. Vac. Sci. Technol. A (Vac. Surf. Films) 7, 2247 (1989).CrossRefGoogle Scholar
Szilard, R., Theory and Analysis of Plates (Prentice-Hall, 1974).Google Scholar
Thokala, R. and Chaudhuri, J., Thin Solid Films 266, 189 (1995).CrossRefGoogle Scholar
Gerlich, D., Dole, S.L., and Slack, G.A., J. Phys. Chem. Solids 47, 437 (1986).CrossRefGoogle Scholar
Fewster, P.F., X-ray Scattering from Semiconductors (Imperial College Press, U.K., 2000), pp. 193196.CrossRefGoogle Scholar
Hsieh, P., Reif, R., and Cunningham, B., in DC Magnetron Reactive Sputtering of Low Stress AlN Piezoelectric Thin Films for MEMS Application (Mater. Res. Soc., Warrendale, PA, 1999), pp. 165170.Google Scholar
Hoffman, D.W. and Thornton, J.A., Thin Solid Films 40, 355 (1977).CrossRefGoogle Scholar
Windischmann, H., Crit. Rev. Solid State Mater. Sci. 17, 547 (1992).CrossRefGoogle Scholar
d’Heurle, F.M., Metall Trans. 1, 725 (1970).CrossRefGoogle Scholar
Iriarte, G.F., Engelmark, F., and Katardjiev, I.V., J. Mater. Res. 17, 1469 (2002).CrossRefGoogle Scholar
Sigmund, P. and Behrisch, R., Sputtering by Particle Bombardment I, edited by Behrisch, R. (Springer, Berlin, Germany, 1981), Chap. 2.Google Scholar
Este, G. and Westwood, W. D., J. Vac. Sci. Technol. A (Vac. Surf. Films) 5, 1892 (1987).CrossRefGoogle Scholar
Huffman, G.L., Fahnline, D.E., Messier, R., and Pilione, L.J., J. Vac. Sci. Technol. A (Vac. Surf. Films) 7, 2252 (1989).CrossRefGoogle Scholar
Hoffman, R.W., in Physics of Thin Films, edited by Hass, G. (Academic Press, New York, 1966).Google Scholar
Hoffman, R.W., Thin Solid Films 34, 185 (1976).CrossRefGoogle Scholar
Sun, R.C., Tisone, T.C., and Cruzan, P.D., J. Appl. Phys. 121, 46 (1975).Google Scholar
Hwangbo, C.K., Lingg, L.J., Lehan, J.P., Macleod, H.A., Makous, J.L., and Kim, S.Y., Appl. Opt. 28, 2769 (1989).CrossRefGoogle Scholar
Campbell, D.S., in Handbook of Thin Film Technology, Maissel, L.I. and Glang, R. (McGraw-Hill, New York, 1970).Google Scholar
Angus, J.C. and Hayman, C.C., Science 214, 913 (1988).CrossRefGoogle Scholar
Paduschek, P., Hopfl, C., and Mitlehner, H., Thin Solid Films 110, 291 (1983).CrossRefGoogle Scholar
Liaw, H.M. and Hickernell, F.S., IEEE UFFC, 42(3) 404 (1995).CrossRefGoogle Scholar
Liaw, H.M., Cronin, W., and Hickernell, F.S., The SAW Characteristics of Sputtered Aluminum Nitride on Silicon, IEEE Ultrasonics Symposium (1993), Vol. 1, pp. 267–71.Google Scholar
Class, W., in An Aluminum Nitride Melting Technique, (Materials Research Corp., Orangeburg, NY, 1968).Google Scholar
Naik, R.S., Reif, R., Lutsky, J.J., and Sodini, C.G., J. Electrochem. Soc. 146, 691 (1999).CrossRefGoogle Scholar
Yim, W.M. and Paff, R.J., J. Appl. Phys. 45, 1456 (1974).CrossRefGoogle Scholar
Slack, G.A. and Bartram, S.F., J. Appl. Phys. 46, 89 (1975).CrossRefGoogle Scholar
Nielson, O.H., Burnett, P.J., Wybourne, M.N., Brice, J.C., Tatsumi, Y., Hart, M., Hu, J.Z., Soma, T., H. Matsuo Kagaya, J.A. van Vechten, S.C. Hardy, and H. Ohsaki, in Mechanical and Thermal Properties (of Silicon), (INSPEC, London, U.K., 1988), pp. 158.Google Scholar
Klokholm, E., J. Vac. Sci. Technol. 6, 138 (1969).CrossRefGoogle Scholar
Doljack, F.A. and Hoffman, R.W., Thin Solid Films 12, 71 (1972).CrossRefGoogle Scholar