Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-14T19:04:26.901Z Has data issue: false hasContentIssue false

Influence of initial crystal structure and electrical pulsing on densification of nanocrystalline alumina powder

Published online by Cambridge University Press:  31 January 2011

R. S. Mishra
Affiliation:
Department of Chemical Engineering and Materials Science, University of California, Davis, California 95616
S. H. Risbud
Affiliation:
Department of Chemical Engineering and Materials Science, University of California, Davis, California 95616
A. K. Mukherjee
Affiliation:
Department of Chemical Engineering and Materials Science, University of California, Davis, California 95616
Get access

Extract

The effect of the crystal structure of starting alumina powder and electric pulsing on the initial stages of densification has been studied in the temperature range of 1200– 1500 °C. Multiple electric pulsing cycles enhance the densification significantly. The α-alumina powders consolidate more readily in comparison to γ-alumina powders. A high density α-alumina specimen (>98% of theoretical density) was obtained at 1300 °C in less than 10 min.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Marcus, H. L., Bourell, D. L., Eliezer, Z., Persad, C., and Weldon, W.J. Metals 39 (12), 6 (1987).Google Scholar
2.Kim, D. K., Pak, H-R., and Okazaki, K., Mater. Sci. Eng. A104, 191 (1988).CrossRefGoogle Scholar
3.Groza, J. R., Risbud, S. H., and Yamazaki, K., J. Mater. Res. 7, 2643 (1992).CrossRefGoogle Scholar
4.Hensley, J. Jr., Shan, C. H., Risbud, S. H., and Groza, J. R., PM in Aerospace, Defence and Demanding Applications – 1993 (Metal Powder Industries Federation, Princeton, NJ), p. 309.Google Scholar
5.Groza, J., Scripta Metall. Mater. 30, 53 (1994).CrossRefGoogle Scholar
6.Risbud, S. H., Groza, J. R., and Kim, M. J., Philos. Mag. B 69, 525 (1994).Google Scholar
7.Risbud, S. H. and Shan, C. H., Mater. Lett. 20, 149 (1994).Google Scholar
8.Mishra, R. S., Schneider, J. A., Shackelford, J. F., and Mukherjee, A. K., NanoStruc. Mater. 5, 525 (1995).Google Scholar
9.Risbud, S. H., Shan, C. H., Kim, M. J., and Mukherjee, A. K., J. Mater. Res. 10, 237 (1995).CrossRefGoogle Scholar
10.Mishra, R. S. and Mukherjee, A. K., in Advances in Powder Metal & Particulate Materials (1996, in press).Google Scholar
11.Mishra, R. S., Mukherjee, A. K., Yamazaki, K., and Shoda, K., J. Mater. Res. 11, 1144 (1996).CrossRefGoogle Scholar
12.Schneider, J. A., Mishra, R. S., and Mukherjee, A. K., in Proc. 2nd Int. Symp. on Advanced Synthesis and Processing, Ceramics Transactions, edited by Spriggs, R., Munir, Z., and Logan, K. (1996, in press).Google Scholar
13.Freim, J., McKittrick, J., Katz, J., and Suckafus, K., NanoStruct. Mater. 4, 371 (1994).CrossRefGoogle Scholar
14.Dynys, F. W. and Halloran, J. W., J. Am. Ceram. Soc. 65, 442 (1982).Google Scholar
15.Kumagai, M. and Messing, G. L., J. Am. Ceram. Soc. 67, C230 (1984).Google Scholar
16.Kumagai, M. and Messing, G. L., J. Am. Ceram. Soc. 68, 500 (1985).CrossRefGoogle Scholar
17.McArdle, L. and Messing, G. L., J. Am. Ceram. Soc. 69, C98 (1986).Google Scholar
18. Baikowski International product literature on Baikalox aluminas (1995).Google Scholar
19.Sutton, W. H., Ceram. Bull. 68, 376 (1989).Google Scholar
20.Matkin, D. I., Munro, W., and Valentine, T. M., J. Mater. Sci. 6, 974 (1971).CrossRefGoogle Scholar
21.Mishra, R. S., West, D. A., and Mukherjee, A. K., Mater. Sci. Forum 225–227, 611 (1996).Google Scholar