Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-30T22:47:38.170Z Has data issue: false hasContentIssue false

Influence of scandium on superplastic ductilities in an Al–Mg–Sc alloy

Published online by Cambridge University Press:  31 January 2011

Shogo Komura
Affiliation:
Department of Materials Science and Engineering, Faculty of Engineering, Kyushu University, Fukuoka 812-8581, Japan
Zenji Horita
Affiliation:
Department of Materials Science and Engineering, Faculty of Engineering, Kyushu University, Fukuoka 812-8581, Japan
Minoru Furukawa
Affiliation:
Department of Technology, Fukuoka University of Education, Munakata, Fukuoka 811-4192, Japan
Minoru Nemoto
Affiliation:
Sasebo National College of Technology, 1-1 Okishin-cho, Sasebo 857-1193, Japan
Terence G. Langdon
Affiliation:
Departments of Materials Science and Mechanical Engineering, University of Southern California, Los Angeles, California 90089-1453
Get access

Abstract

Ultrafine grain sizes, of the order of approximately 0.2 μm, may be introduced into Al–Mg–Sc alloys by subjecting the material to severe plastic deformation through the process of equal-channel angular pressing (ECAP). Experiments were conducted to evaluate the influence of the solution treatment temperature on the ductility of an Al–3% Mg–0.2% Sc alloy after ECAP. The results show the highest ductilities are achieved when the solution treatment temperature is within the narrow range of approximately 878 to about 883 K, immediately below the temperature associated with the onset of partial melting. These high temperatures serve to maximize the amount of scandium in solid solution and this leads, on subsequent heating, to an extensive precipitation of fine secondary Al3Sc particles which inhibit grain growth at the higher temperatures. Conversely, solution treatments at temperatures below approximately 878 K give less Sc in solid solution within the matrix and the precipitation of the Al3Sc particles is then insufficient to retain a uniform ultrafine microstructure.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Mohamed, F.A., Scr. Metall. 12, 99 (1978).CrossRefGoogle Scholar
2.Taleff, E.M., Lesuer, D.R., and Wadsworth, J., Metall. Mater. Trans. 27A, 343 (1996).CrossRefGoogle Scholar
3.Woo, S.S., Kim, Y.R., Shin, D.H., and Kim, W.J., Scr. Mater. 37, 1351 (1997).CrossRefGoogle Scholar
4.Taleff, E.M., Henshall, G.A., Nieh, T.G., Lesuer, D.R., and Wadsworth, J., Metall. Mater. Trans. 29A, 1081 (1998).Google Scholar
5.Sawtell, R.R. and Jensen, C.L., Metall. Trans. 21A, 421 (1990).CrossRefGoogle Scholar
6.Nieh, T.G., Kaibyshev, R., Hsiung, L.M., Nguyen, N., and Wadsworth, J., Scr. Mater. 36, 1011 (1997).CrossRefGoogle Scholar
7.Nieh, T.G., Hsiung, L.M., Wadsworth, J., and Kaibyshev, R., Acta Mater. 46, 2789 (1998).CrossRefGoogle Scholar
8.Segal, V.M., Mater. Sci. Eng. A 197, 157 (1995).CrossRefGoogle Scholar
9.Iwahashi, Y., Horita, Z., Nemoto, M., and Langdon, T.G., Acta Mater. 46, 3317 (1998).CrossRefGoogle Scholar
10.Komura, S., Berbon, P.B., Furukawa, M., Horita, Z., Nemoto, M., and Langdon, T.G., Scr. Mater. 38, 1851 (1998).CrossRefGoogle Scholar
11.Berbon, P.B., Komura, S., Utsunomiya, A., Horita, Z., Furukawa, M., Nemoto, M., and Langdon, T.G., Mater. Trans., JIM 40, 772 (1999).CrossRefGoogle Scholar
12.Horita, Z., Furukawa, M., Nemoto, M., Barnes, A.J., and Langdon, T.G., Acta Mater. 48, 3633 (2000).CrossRefGoogle Scholar
13.Komura, S., Horita, Z., Nemoto, M., and Langdon, T.G., J. Mater. Res. 14, 4044 (1999).CrossRefGoogle Scholar
14.Langdon, T.G., Furukawa, M., Nemoto, M., and Horita, Z., JOM 52(4), 30 (2000).CrossRefGoogle Scholar
15.Iwahashi, Y., Wang, J., Horita, Z., Nemoto, M., and Langdon, T.G., Scr. Mater. 35, 143 (1996).CrossRefGoogle Scholar
16.Furukawa, M., Iwahashi, Y., Horita, Z., Nemoto, M., and Langdon, T.G., Mater. Sci. Eng. A 257, 328 (1998).CrossRefGoogle Scholar
17.Ohishi, K., Horita, Z., Furukawa, M., Nemoto, M., and Langdon, T.G., Metall. Mater. Trans. 29A, 2011 (1998).CrossRefGoogle Scholar
18.Wang, J., Iwahashi, Y., Horita, Z., Furukawa, M., Nemoto, M., Valiev, R.Z., and Langdon, T.G., Acta Mater. 44, 2973 (1996).CrossRefGoogle Scholar
19.Toropova, L.S., Eskin, D.G., Kharakterova, M.L., and Dobatkina, T.V., Advanced Aluminum Alloys Containing Scandium: Structure and Properties (Gordon and Breach Science Publishers, Amsterdam, The Netherlands, 1998).Google Scholar
20.Toropova, L.S., Bykov, Yu.G., Lazorenko, V.M., and Platov, Yu.M., Fiz. Metall. Metalloved. 54, 201 (1982).Google Scholar
21.Higashi, K., Mabuchi, M., and Langdon, T.G., ISIJ Int. 36, 1423 (1996).CrossRefGoogle Scholar