Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-13T02:26:42.177Z Has data issue: false hasContentIssue false

Influence of strain rate on the mechanical behavior of cortical bone interstitial lamellae at the micrometer scale

Published online by Cambridge University Press:  01 August 2006

Maximilien Vanleene
Affiliation:
Laboratoire de Biomécanique et Génie Biomédical, CNRS UMR 6600 (Centre National de la Recherche Scientifique Unité Mixte de Recherche), Université de Technologie de Compiègne, 60205 Compiègne Cedex, France
Pierre-Emmanuel Mazeran
Affiliation:
Laboratoire Roberval Unité de Recherche en Mécanique, CNRS FRE 2833 (Centre National de la Recherche Scientifique Formation de Recherche en Evolution 2833), Université de Technologie de Compiègne, 60205 Compiègne Cedex, France
Marie-Christine Ho Ba Tho*
Affiliation:
Laboratoire de Biomécanique et Génie Biomédical, CNRS UMR 6600 (Centre National de la Recherche Scientifique Unité Mixte de Recherche), Université de Technologie de Compiègne, 60205 Compiègne Cedex, France
*
a) Address all correspondence to this author. e-mail: hobatho@utc.fr
Get access

Abstract

Investigations of bone mechanical properties are of major importance for bone pathology research, biomaterials, and development of in vivo bone characterization devices. Because of its complex multiscale structure, assessment of bone microstructure is an important step for understanding its mechanical behavior. In this study, we have investigated the strain rate influence on the mechanical properties of interstitial lamellae on two human femur bone samples. Nanoindentation tests were performed with the continuous stiffness measurement technique. Young's modulus and hardness were calculated using the Oliver and Pharr method. A statistical significant influence of strain rate on hardness was found (p < 0.05) showing a viscoplastic behavior of interstitial bone at the micrometer scale. This phenomenon may reflect the role of the organic component in the bone matrix mechanical behavior.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Rho, J.Y., Kuhn-Spearing, L., Zioupos, P.: Mechanical properties and the hierarchical structure of bone. Med. Eng. Phys. 20, 92 (1998).CrossRefGoogle ScholarPubMed
2.Reilly, D.T., Burstein, A.H., Frankel, V.H.: The elastic modulus for bone. J. Biomech. 7, 271 (1974).CrossRefGoogle ScholarPubMed
3.Reilly, D.T., Burstein, A.H.: The elastic and ultimate properties of compact bone tissue. J. Biomech. 8, 393 (1975).CrossRefGoogle ScholarPubMed
4.Currey, J.D.: The mechanical properties of bone. Clin. Orth. Relat. Res. 73, 210 (1970).CrossRefGoogle ScholarPubMed
5.Currey, J.D.: The effect of porosity and mineral content on the Young's modulus of elasticity of compact bone. J. Biomech. 21, 131 (1988).CrossRefGoogle ScholarPubMed
6.Zioupos, P., Currey, J.D.: Changes in the stiffness, and toughness of human cortical bone with age. Bone 22, 57 (1998).CrossRefGoogle ScholarPubMed
7.Ashman, R.B., Cowin, S.C., Van Buskirk, W.C., Rice, J.C.: A continuous wave technique for the measurement of the elastic properties of cortical bone. J. Biomech. 17, 349 (1984).CrossRefGoogle ScholarPubMed
8.Mehta, S.S., Öz, O.K., Antich, P.P.: Bone elasticity and ultrasound velocity are affected by subtle changes in the organic matrix. J. Bone Miner. Res. 13, 114 (1998).CrossRefGoogle ScholarPubMed
9.Bensamoun, S., Gherbezza, J-M., de Belleval, J-F., Tho, M-C. Ho Ba: Transmission scanning acoustic imaging of human cortical bone and relation with the microstructure. Clin. Biomech. (Bristol, Avon). 19, 639 (2004).CrossRefGoogle ScholarPubMed
10.Ascenzi, A., Bonucci, E.: The tensile properties of single osteons. Anat. Rec. 158, 375 (1967).CrossRefGoogle ScholarPubMed
11.Ascenzi, A., Bonucci, E.: The compressive properties of single osteons. Anat. Rec. 161, 377 (1968).CrossRefGoogle ScholarPubMed
12.Ascenzi, A., Baschieri, P., Benvenuti, A.: The bending properties of single osteons. J. Biomech. 23, 763 (1990).CrossRefGoogle ScholarPubMed
13.Ascenzi, A., Baschieri, P., Benvenuti, A.: The torsional properties of single selected osteons. J. Biomech. 27, 875 (1994).CrossRefGoogle ScholarPubMed
14.Oliver, W.C., Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
15.Lucas, B.N., Oliver, W.C., Pharr, G.M., and Loubet, J-L.: Time dependent deformation during indentation testing, in Thin Films: Stresses and Mechanical Properties VI edited by Gerberich, W.W., Gao, H., Sundgren, J-E., and Baker, S.P. (Mater. Res. Soc. Symp. Proc. 436, Pittsburgh, PA, 1997), p. 233.Google Scholar
16.Fisher-Cripps, A.C.: Nanoindentation 2nd ed. (Springer-Verlag, New York, 2004).CrossRefGoogle Scholar
17.Rho, J.Y., Tsui, T.Y., Pharr, G.M.: Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation. Biomaterials 18, 1325 (1997).CrossRefGoogle ScholarPubMed
18.Rho, J.Y., Zioupos, P., Currey, J.D., Pharr, G.M.: Microstructural elasticity and regional heterogeneity in human femoral bone of various ages examined by nanoindentation. J. Biomech. 35, 189 (2002).CrossRefGoogle ScholarPubMed
19.Zysset, P.K., Guo, X.E., Hoffler, C.E., Moore, K.E., Goldstein, S.A.: Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur. J. Biomech. 32, 1005 (1999).CrossRefGoogle ScholarPubMed
20.Rho, J.Y., Zioupos, P., Currey, J.D., Pharr, G.M.: Variation in the individual thick lamellar properties within osteons by nanoindentation. Bone 2, 295 (1999).CrossRefGoogle Scholar
21.Hoffler, C.E., Moore, K.E., Kozloff, K., Zysset, P.K., Brown, M.B., Goldstein, S.A.: Heterogeneity of bone lamellar-level elastic moduli. Bone 26, 603 (2000).CrossRefGoogle ScholarPubMed
22.Hengsberger, S., Boivin, G., Zysset, P.K.: Morphological and mechanical properties of bone structural units: A two case study. JSME Int. J. 45, 936 (2002).CrossRefGoogle Scholar
23.Hengsberger, S., Kulik, A., Zysset, P.: Nanoindentation discriminates the elastic properties of individual human bone lamellae under dry and physiological condition. Bone 30, 178 (2002).CrossRefGoogle Scholar
24.Fan, Z., Swadener, J.G., Rho, J.Y., Roy, M.E., Pharr, G.M.: Anisotropic properties of human tibial cortical bone as measured by nanoindentation. J. Orth. Res. 20, 806 (2002).CrossRefGoogle ScholarPubMed
25.Hengsberger, S., Enstroem, J., Peyrin, F., Zysset, P.K.: How is the indentation modulus of bone tissue related to its macroscopic elastic response? A validation study. J. Biomech. 36, 1503 (2003).CrossRefGoogle Scholar
26.Fan, Z., Rho, J.Y.: Effects of viscoelasticity and time-dependent plasticity on nanoindentation measurements of human cortical bone. J. Biomed. Mater. Res. 67A, 208 (2003).CrossRefGoogle Scholar
27.Tai, K., Qui, H.J., Ortiz, C.: Effect of mineral content on the nanoindentation properties and nanoscale deformation mechanisms of bovine tibial cortical bone. J. Mater. Sci.: Mater. Med. 16, 947 (2005).Google ScholarPubMed
28.Rho, J.Y., Pharr, G.M.: Effects of drying on the mechanical properties of bovine femur measured by nanoindentation. J. Mater. Sci.: Mater. Med. 10, 485 (1999).Google ScholarPubMed
29.Hoffler, C.E., Guo, X.E., Zysset, P.K., Goldstein, S.A.: An application of nanoindentation technique to measure bone tissue lamellae properties. J. Biomech. Eng. 127, 1046 (2005).CrossRefGoogle ScholarPubMed
30.Hochstetter, G., Jimenez, A., Loubet, J.L.: Strain-rate effects on hardness of glassy polymers in the nanoscale range—Comparison between quasi-static and continuous measurements. J. Macromol. Sci., Phys. B38, 681 (1999).CrossRefGoogle Scholar
31.Carter, D.R., Hayes, W.C.: Bone compressive strength: The influence of density and strain rate. Science 194, 1174 (1976).CrossRefGoogle ScholarPubMed
32.Carter, D.R., Hayes, W.C.: The compressive behaviour of bone as two-phase porous structure. J. Bone Joint Surg. Am. 59, 954 (1977).CrossRefGoogle ScholarPubMed
33.Sasaki, N., Yoshikawa, M.: Stress relaxation in native and EDTA-treated bone as a function of mineral content. J. Biomech. 26, 77 (1993).CrossRefGoogle ScholarPubMed